Citation: Abd El-Aziz A. Said, Mohamed Abd El-Aal. Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 67-74. shu

Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether

  • Corresponding author: Abd El-Aziz A. Said, aasaid55@yahoo.com
  • Received Date: 2 June 2017
    Revised Date: 13 November 2017

Figures(6)

  • ZrO2 was treated with 10% SO42- from different metal sulfate precursors for methanol dehydration to dimethyl ether. All the samples exhibited tetragonal phase and no diffraction peaks corresponding to metal sulfates or metal oxides were observed. The FT-IR results revealed that there were different interactions between sulfate and ZrO2, and this had a great effect on the surface area of the samples. The catalytic activity was measured over the catalysts in the temperature range of 100-300℃. The results revealed that sulfated zirconia with CuSO4·5H2O and Al2(SO4)3·16H2O showed the best catalytic activity. The maximum yield of DME ≈ 87% was obtained over CuSZ at a reaction temperature of 275℃. Moreover, the catalytic activity of the catalysts was correlated well with their surface acidity that measured by dehydration of isopropanol.
  • 加载中
    1. [1]

      LIU Y, LUO J, GIRLEANU M, ERSEN O, PHAM-HUU C, MENY C. Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from fischer-tropsch synthesis[J]. J Catal, 2014,348:179-192.  

    2. [2]

      WEI Y, DE JONGH P E, BONATI M L M, LAW D J, SUNLEY G J, DE JONG K P. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation[J]. Appl Catal A:Gen, 2015,504:211-219. doi: 10.1016/j.apcata.2014.12.027

    3. [3]

      DęBEK R, FILIPA M, RIBEIRO G, FERNANDES A, MOTAK M. Dehydration of methanol to dimethyl ether over modified vermiculites[J]. C R Chimie, 2015,18:1211-1222. doi: 10.1016/j.crci.2015.05.003

    4. [4]

      MACINA D, PIWOWARSKA Z, TARACH K, G-MAREK K, RYCZKOWSKI J, CHMIELARZ L. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol[J]. Mater Res Bull, 2016,74:425-435. doi: 10.1016/j.materresbull.2015.11.018

    5. [5]

      STIEFEL M, AHMAD R, ARNOLD U, DÖRING M. Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas:Influence of dehydration catalysts and operating conditions[J]. Fuel Process Technol, 2011,92:1466-1474. doi: 10.1016/j.fuproc.2011.03.007

    6. [6]

      TOKAY K C, DOGU T, DOGU G. Dimethyl ether synthesis over alumina based catalysts[J]. Chem Eng J, 2012,184:278-285. doi: 10.1016/j.cej.2011.12.034

    7. [7]

      SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. Effect of ZrO2 on the catalytic performance of nanoγ-Al2O3 in dehydration of methanol to dimethyl ether at relatively low temperature[J]. Res Chem Intermedia, 2016,42:1537-1556. doi: 10.1007/s11164-015-2101-7

    8. [8]

      GARCíA-TRENCO A, MARTÍNEZ A. Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts:New insights into the role of zeolite acidity[J]. Appl Catal A:Gen, 2012,411/412:170-179. doi: 10.1016/j.apcata.2011.10.036

    9. [9]

      SAID A A, ABD EL-WAHAB M M, ABD EL-AAL M. The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether[J]. J Mol Catal A:Chem, 2014,394:40-47. doi: 10.1016/j.molcata.2014.06.041

    10. [10]

      YADAV G D, NAIR J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microporous Mesoporous Mater, 1999,33:1-48. doi: 10.1016/S1387-1811(99)00147-X

    11. [11]

      REDDY B M, PATIL M K. Organic syntheses and transformations catalyzed by sulfated zirconia[J]. Chem Rev, 2009,109:2185-2208. doi: 10.1021/cr900008m

    12. [12]

      IVANOV V K, BARANCHIKOV A Y, KOPITSA G P, LERMONTOV S A, YURKOVA L L, GUBANOVA N N, IVANOVA O S, LERMONTOV A S, RUMYANTSEVA M N, VASILYEVA L P, SHARP M, PRANZAS P K, TRETYAKOV Y D. pH control of the structure, composition, and catalytic activity of sulfated zirconia[J]. J Solid state Chem, 2013,198:496-505. doi: 10.1016/j.jssc.2012.11.022

    13. [13]

      CLARK J H, MACQUARRIE D J. Handbook of Green Chemistry and Technology[M]. Hoboken:John Wiley & Sons, 2008, 103.

    14. [14]

      LOPEZ D E, GOODWIN J G JR, BRUCE D A, FURUTA S. Esterification and transesterification using modified-zirconia catalysts[J]. Appl Catal A:Gen, 2008,339:76-83. doi: 10.1016/j.apcata.2008.01.009

    15. [15]

      LI X B, NAGAOKA K, LERCHER J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures[J]. J Catal, 2004,227:130-137. doi: 10.1016/j.jcat.2004.07.003

    16. [16]

      OCCELLI M L, SCHIRALDI D A, AUROUX A, KEOGH R A, DAVIS B H. Effects of copper on the activity of sulfated zirconia catalysts for n-pentane isomerization[J]. Appl Catal A:Gen, 2001,209(1/2):165-177.  

    17. [17]

      SONG X, REDDY K R, SAYARI A. Effect of Pt and H2on n-butane isomerization over Fe and Mn promoted sulfated zirconia[J]. J Catal, 1996,161(1):206-210. doi: 10.1006/jcat.1996.0178

    18. [18]

      SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. Catalytic dehydration of methanol to dimethyl ether over nanosized WO3/Al2O3 system under inert and oxidative atmosphere[J]. Monatsh Chem, 2016,147(9):1507-1516. doi: 10.1007/s00706-015-1649-7

    19. [19]

      SAID A A, ABD EL-AAL M. Direct dehydrogenation of methanol to anhydrous formaldehyde over Ag2O/γ-Al2O3 nanocatalysts at relatively low temperature[J]. Res Chem Intermedia, 2017,43(5):3205-3217. doi: 10.1007/s11164-016-2820-4

    20. [20]

      GU Y, YANG H, LI B, MAO J, AN Y. A ternary nanooxide NiO-TiO2-ZrO2/SO42- as efficient solid superacid catalysts for electro-oxidation of glucose[J]. Electrochim Acta, 2016,194:367-376. doi: 10.1016/j.electacta.2016.02.113

    21. [21]

      PERIASAMY A, MURUGANAND S, PALANISWAMY M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4crystals[J]. Rasāyan J Chem, 2009,2(4):981-989.  

    22. [22]

      AL DABBAS M, EISA M Y, KADHIM W H. Estimation of gypsum-calcite percentages using a fourier transform infrared spectrophotometer (FT-IR), in Alexandria Gypsiferous Soil-Iraq[J]. Iraqi J Sci, 2014,55(4B):1916-1926.  

    23. [23]

      RAMA RAO S, LINGAM C B, RAJESH D, VIJAYALAKSHMI R P, SUNANDANA C S. Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4[J]. IOSR J Appl Phy, 2013,4(2):39-43. doi: 10.9790/4861

    24. [24]

      AHUJA I S, YADAVA C L. Structural information on manganese (Ⅱ), cobalt(Ⅱ), nickel(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra[J]. J Mol Struct, 1982,81(3/4):229-234.  

    25. [25]

      MANEVA M, RIZOVA D, GENOV L. IR spectra of NiSO4.nH2O (n=7, 6, 4, 1, 0) and of their deuterated analogues[J]. Spectrosc Lett, 1992,25(4):603-615. doi: 10.1080/00387019208021535

    26. [26]

      SAGUNTHALA P, YASOTHA P, VIJAYA L. Growth and characterization of manganese (Ⅱ) sulphate and L-lysine doped manganese (Ⅱ) sulphate (LMnSO4) crystals[J]. Int J Sci Eng Applicat, 2013:46-83. doi: 10.7753/IJSEANCRTAM.1012

    27. [27]

      SATO T, OZAWA F, NAKAMURA T, WATANABE H, IKOMA S. Thermal decomposition of zirconium hydroxide[J]. Thermochim Acta, 1979,34(2):211-220. doi: 10.1016/0040-6031(79)87110-5

    28. [28]

      LI N, WANG A, WANG X, ZHENG M, CHENG R, ZHANG T. NO reduction by CH4 in the presence of excess O2 over Mn/sulfated zirconia catalysts[J]. Appl Catal B:Environ, 2004,48(4):259-265. doi: 10.1016/j.apcatb.2003.11.002

    29. [29]

      LI X, NAGAOKA K, SIMON L J, LERCHER J A. Interaction between sulfated zirconia and alkanes:Prerequisites for active sites-formation and stability of reaction intermediates[J]. J Catal, 2005,230(1):214-225. doi: 10.1016/j.jcat.2004.11.045

    30. [30]

      NAYEBZADEH H, SAGHATOLESLAMI N, MASKOOKI A, VAHID B R. Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid[J]. Chem Biochem Eng Q, 2014,28(3):259-265. doi: 10.15255/CABEQ

    31. [31]

      SOHN J R, LIM J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis[J]. Mater Res Bull, 2006,41(7):1225-1241. doi: 10.1016/j.materresbull.2006.01.010

    32. [32]

      JENTOFT F C, HAHN A, KRÖHNERT J, LORENZ G, JENTOFT R E, RESSLER T, WILD U, SCHLÖGL R, HÄβNER C, KÖHLER K K. Incorporation of manganese and iron into the zirconia lattice in promoted sulfated zirconia catalysts[J]. J Catal, 2004,224(1):124-137. doi: 10.1016/j.jcat.2004.02.012

    33. [33]

      FERNÁNDEZ-OSORIO A, RAMOS-OLMOS L, JULIÁN C F. Black nanocrystalline cubic zirconia:Manganese-stabilized c-ZrO2 prepared via the sol-gel method[J]. Mater Chem Phys, 2014,147(3):796-803. doi: 10.1016/j.matchemphys.2014.06.023

    34. [34]

      VALIGI M, GAZZOLI D, DRAGONE R, MARUCCI A, MATTEI G. Manganese oxide-zirconium oxide solid solutions. An X-ray diffraction, Raman spectroscopy, thermogravimetry and magnetic study[J]. J Mater Chem, 1996,6(3):403-408. doi: 10.1039/JM9960600403

    35. [35]

      SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. The role of acid sites in the catalytic performance of tungsten oxide during the dehydration of isopropyl and methyl alcohols[J]. Chem Mater Eng, 2016,4(2):17-25.  

    36. [36]

      TYAGI B, MISHRA M K, JASRA R V. Solvent free synthesis of 7-isopropyl-1, 1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst[J]. J Mol Catal A:Chem, 2009,301(1/2):67-78.  

    37. [37]

      SOHN J R, PARK W C. Characterization and catalytic activity for ethylene dimerization of nickel sulfate supported on zirconia[J]. Appl Catal A:Gen, 2002,230(1):11-18.  

    38. [38]

      SOHN J R, KIM Y T, SHIN D C. NiSO4 supported on FeO-promoted ZrO2 catalyst for ethylene dimerization[J]. Bull Korean Chem Soc, 2005,26(11):1749-1756. doi: 10.5012/bkcs.2005.26.11.1749

    39. [39]

      PIZZIO L R, BLANCO M N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts[J]. Appl Catal A:Gen, 2003,255(2):265-277. doi: 10.1016/S0926-860X(03)00565-9

    40. [40]

      BREITKOPF C, MATYSIK S, PAPP H. Selective poisoning of active centers of sulfated zirconia monitored by TAP, XPS, and DRIFTS[J]. Appl Catal A:Gen, 2006,301(1):1-8. doi: 10.1016/j.apcata.2005.11.009

    41. [41]

      CHEUNG T K, DITRI J L, GATES B C. Low-temperature superacid catalysis:Reactions of n-butane catalyzed by iron-and manganese-promoted sulfated zirconia[J]. J Catal, 1995,151(2):464-466. doi: 10.1006/jcat.1995.1050

    42. [42]

      GAO Z, XIA Y, HUA W, MIAO C. New catalyst of SO42-/Al2O3-ZrO2 for n-butane isomerization[J]. Top Catal, 1998,6(1/4):101-106. doi: 10.1023/A:1019122608037

    43. [43]

      YOUNES M K, GHORBEL A. Comparative study of the acidity of sulphated zirconia supported on alumina prepared by sol-gel and impregnation methods[J]. J Sol-Gel Sci Technol, 2003,26(1/3):677-680. doi: 10.1023/A:1020769331891

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    8. [8]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    9. [9]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    10. [10]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    14. [14]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    15. [15]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    16. [16]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    17. [17]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    18. [18]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(10)
  • Abstract views(553)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return