Citation: WANG Qing, ZHANG Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of mineral matter on product evolution during pyrolysis of Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 328-334. shu

Effect of mineral matter on product evolution during pyrolysis of Huadian oil shale

  • Corresponding author: WANG Qing, rlx888@126.com
  • Received Date: 12 August 2015
    Revised Date: 16 November 2015

    Fund Project: The project was supported by the National Natural Science Foundation of China 51276034

Figures(4)

  • The effect of mineral matter on pyrolysis and product evolution of oil shale was studied by GC and FT-IR. Hudian oil shale was treated by sequential washing with HCl and HF/HCl. The results show that carbonate has catalytic effect on conversion of organic carbon and hydrogen from Kerogen to shale oil, which is inhibited by silicate. The H/C atomic ratio in shale oil increases in both carbonate-free and silicate-free oil shale. Carbonate enhances gas yield and inhibits oil yield, while silicate is just opposite. The contents of CO2 and H2 decrease but CO increases in both carbonate-free and silicate-free oil shale. Carbonate can inhibit generation of hydrocarbon in gas product while silicate has catalytic effect on it. All the carbonate and silicate can increase the length and degree of branching aliphatic side chains in shale oil and improve aromatization of the solid product from shale.
  • 加载中
    1. [1]

      QIAN Jia-lin, WANG Jian-qiu, LI Shu-yuan. World oil shale utilization and its future[J]. J Jilin Univ (Earth Sci Ed), 2006,36(6):878-887.  

    2. [2]

      SAXBY J D. Isolation of kerogen in sediments by chemical methods[J]. Chem Geol, 1970,6:173-184. doi: 10.1016/0009-2541(70)90017-3

    3. [3]

      YÜRÜM Y, DROR Y, LEVY M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa Efe oil shale[J]. Fuel Process Technol, 1985,11(1):71-86. doi: 10.1016/0378-3820(85)90017-7

    4. [4]

      LU S T, RUTH E, KAPLAN I R. Pyrolysis of kerogens in the absence and presence of montmorillonite-I. The generation, degradation and isomerization of steranes and triterpanes at 200 and 300℃[J]. Org Geochem, 1989,14(5):491-499. doi: 10.1016/0146-6380(89)90029-6

    5. [5]

      LU S T, KAPLAN I R. Pyrolysis of kerogens in the absence and presence of montmorillonite-II. Aromatic hydrocarbons generated at 200 and 300℃[J]. Org Geoche, 1989,14(5):501-510. doi: 10.1016/0146-6380(89)90030-2

    6. [6]

      KARABAKAN A, YÜRÜM Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales[J]. Fuel, 1998,77(12):1303-1309. doi: 10.1016/S0016-2361(98)00045-3

    7. [7]

      BORREGO A G, PRADO J G, FUENTE E. Pyrolytic behaviour of Spanish oil shales and their kerogens[J]. J Anal Appl Pyrolysis, 2000,56(1):1-21. doi: 10.1016/S0165-2370(99)00092-3

    8. [8]

      BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005,86(6):673-690. doi: 10.1016/j.fuproc.2004.07.003

    9. [9]

      ABOULKAS A, EL HARFI K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen[J]. Oil Shale, 2008,25(4):426-443. doi: 10.3176/oil.2008.4.04

    10. [10]

      ABOULKAS A, EL HARFI K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen[J]. J Fuel Chem Technol, 2009,37(6):659-667. doi: 10.1016/S1872-5813(10)60013-8

    11. [11]

      AL-HARAHSHEH A, AL-HARAHSHEH M, AL-OTOOM A. Effect of demineralization of El-lajjun Jordanian oil shale on oil yield[J]. Fuel Process Technol, 2009,90(6):818-824. doi: 10.1016/j.fuproc.2009.03.005

    12. [12]

      AL-HARAHSHEH M, AL-AYED O, ROBINSON J. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Process Technol, 2011,92(9):1805-1811. doi: 10.1016/j.fuproc.2011.04.037

    13. [13]

      SERT M, BALLICE L, YVKSEL M. Effect of mineral matter on product yield and composition at isothermal pyrolysis of Turkish oilshales[J]. Oil Shale, 2009,26(4):463-474. doi: 10.3176/oil.2009.4.03

    14. [14]

      YAN J W, JIANG X M, HAN X X. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013,104:307-317. doi: 10.1016/j.fuel.2012.10.024

    15. [15]

      GUO H F, LIN J D, YANG Y D, LIU Y Y. Effect of minerals on the self-heating retorting of oil shale: Self-heating effect and shale-oil production[J]. Fuel, 2014,118:186-193. doi: 10.1016/j.fuel.2013.10.058

    16. [16]

      CHAO F, YAN J W, HUANG Y R, HAN X X. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel, 2015,139:502-510. doi: 10.1016/j.fuel.2014.09.021

    17. [17]

      GAO Xian-zhi, ZHANG Wan-xuan, ZHANG Hou-fu. Research on the Influence of mineral pyrolysis[J]. Pet Geol Exp, 1990,12(2):201-205.  

    18. [18]

      LIU Xiao-yan. The impact of organic evolution of clay minerals[J]. Nat Gas Geosci, 1995,6(3):23-26.  

    19. [19]

      LIU Luo-fu, LI Shu-yuan. Progress of hydrocarbon source rocks in the catalytic mechanism[J]. Geol Rev, 2000,46(5):491-498.  

    20. [20]

      FANG xuan, LEI Huai-yan. Research on the influence of organisms-organic pyrolysis by Clay minerals[J]. Nat Gas Geosci, 1993,4(6):80-85.  

    21. [21]

      ZHANG Zhi-huan, GAO Xian-zhi. The influence and mechanism of clay minerals on kerogen pyrolysis products[J]. J China Univ Pet (Nat Sci Ed), 1995,19(5):11-17.  

    22. [22]

      WANG Q, BAI J R, SUN B Z. Comprehensive utilization strategy of Huadian oil shale[J]. Oil shale, 2005,22(3):305-316.  

    23. [23]

      AL-HARAHSHEH M, SHAWABKEH R, AL-HARAHSHEH A. Surface modification and characterization of Jordanian kaolinite: Application for lead removal from aqueous solutions[J]. Appl Surf Sci, 2009,255(18):8098-8103. doi: 10.1016/j.apsusc.2009.05.024

    24. [24]

      WU Ping-xiao. Reserch to montmorillonite activation and its microstructure[D]. Guangzhou: Guangzhou Institute of Geochemistry, Academia Sinica, 2001.

    25. [25]

      SCACCIA S. TG-FTIR and kinetics of devolatilization of Sulcis coal[J]. J Anal Appl Pyrolysis, 2013,104(10):95-102.

    26. [26]

      HOU Xiang-lin. China Sshale Oil Industry[M]. Beijing: Petroleum Industry Press, 1984.

    27. [27]

      LEI Huai-yan, SHI Yu-xin, GUAN Ping. Study of catalysis on transitional gas by clay minerals[J]. Sci China, 1997,27(1):39-44.  

    28. [28]

      MRÁZIKOVÁ J, SINDLER S, VEVERKA L. Evolution of organic oxygen bonds during pyrolysis of coal[J]. Fuel, 1986,65(3):342-345. doi: 10.1016/0016-2361(86)90293-0

    29. [29]

      JOSEPH J T, FORRAI T R. Effect of exchangeable cations on liquefaction of low rank coals[J]. Fuel, 1992,71(1):75-80. doi: 10.1016/0016-2361(92)90195-T

    30. [30]

      LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014,42(2):129-137.  

    31. [31]

      IBARRA J V, MOLINER R, BONET A J. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994,73(6):918-924. doi: 10.1016/0016-2361(94)90287-9

    32. [32]

      PANDOLFO A G, JOHNS R B, DYRKACZ G R. Separation and preliminary characterization of high-purity maceral group fractions from an Australian bituminous coal[J]. Energy Fuels, 1988,2(5):657-662. doi: 10.1021/ef00011a010

    33. [33]

      IBARRA J V, MUNOZ E, MOLINER R. FT-IR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996,24(6):725-735.

    34. [34]

      WANG S, TANG Y, SCHOBERT H H. FT-IR and 13C NMR investigation of coal component of late Permian coals from southern China[J]. Energy Fuels, 2011,25(12):5672-5677. doi: 10.1021/ef201196v

    35. [35]

      LI Fan, ZHANG Yong-fa. Effect of the mineral matter on the pyrolysis reaction of coal macerals[J]. J Fuel Chem Technol, 1992,30(3):300-306.  

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    7. [7]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    12. [12]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    20. [20]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

Metrics
  • PDF Downloads(2)
  • Abstract views(730)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return