Citation: Liu Wen, Yang Weijing, Guo Rui, Li Yong, Pei Haijuan, Xie Jingying. Progress in Optimization Design of High-Power Lithium/Carbon Fluorides Primary Batteries[J]. Chemistry, ;2019, 82(6): 483-487. shu

Progress in Optimization Design of High-Power Lithium/Carbon Fluorides Primary Batteries

  • Corresponding author: Xie Jingying, jyxie@mail.sim.ac.cn
  • Received Date: 6 December 2018
    Accepted Date: 21 January 2019

Figures(3)

  • Lithium/carbon fluorides (Li/CFx) battery, owing to its high energy density (2203 Wh/kg) of solid cathode systems, has attracted much attention and been applied in many fields. The optimal design of Li/CFx primary batteries with high power density was introduced in this paper. The precursors of fluorinated carbon materials, fluorination methods, surface modification of fluorinated carbon materials, electrode structure design and other factors are discussed in detail. Based on our work and recent studies by other groups, important and comprehensive guidelines for further research and development direction of lithium/carbon fluorides batteries are provided.
  • 加载中
    1. [1]

      H Touhara, F Okino. Carbon, 2000, 28:241~267.

    2. [2]

      G G Amatucci, N Pereira. J. Fluorine Chem., 2007, 128:243~262. 

    3. [3]

      R Hagiwara, T Nakajima, N Watanabe. J. Electrochem. Soc., 1988, 135:2128~2133. 

    4. [4]

      S S Zhang, D Foster, J Wolfenstine et al. J. Power Sources, 2009, 187:233~237. 

    5. [5]

      N D Leifer, V S Johnson, R Ben-Ari et al. J. Electrochem. Soc., 2010, 157:A148~A154. 

    6. [6]

      J H S R DeSilva, R Vazquez, P E Stallworth et al. J. Power Sources, 2011, 196:5659~5666. 

    7. [7]

      A Hamwi, H Alvergnat, S Bonnamy et al. Carbon, 1997, 35:723~728. 

    8. [8]

      E T Mickelson, C B Huffman, A G Rinzlera et al. Chem. Phys. Lett., 1988, 296:188~194.

    9. [9]

      Y Li, Y Feng, W Feng. Electrochim. Acta, 2013, 107:343~349. 

    10. [10]

      R Yazami, A Hamwi, K Guérin et al. Electrochem. Commun., 2007, 9:1850~1855. 

    11. [11]

      Y Ahmad, K Guérin, M Dubois et al. Electrochim. Acta, 2013, 114:142~151. 

    12. [12]

      P F Fulvio, S S Brown, J Adcock et al. Chem. Mater., 2011, 23:4420~4427. 

    13. [13]

      Y Matsuo, T Nakajima. Electrochim. Acta, 1996, 41:15~19. 

    14. [14]

      D Claves, A J Giraudet, A Hamwi et al. J. Phys. Chem. B, 2001, 105:1739~1742. 

    15. [15]

      A Hamwi. J. Phys. Chem. Solids, 1996, 57:677~688. 

    16. [16]

      N Liu, H Touhara, F Okino et al. J. Electrochem. Soc., 1996, 143:2267~2272. 

    17. [17]

      D Damien, P M Sudeep, T N Narayanan et al. RSC Adv., 2013, 3:25702~25706. 

    18. [18]

      H Fujimoto, A Mabuchi. Carbon, 1992, 30(2):851~857.

    19. [19]

      R Hagiwara, M Lerner, N Bartle. J. Electrochem. Soc., 1988, 135:2393~2394.

    20. [20]

      C Delabarre, K Guérin, M Dubois et al. J. Fluorine Chem., 2005, 126:1078~1087. 

    21. [21]

      A S Nazarov, V G Makotchenko. Inorg. Mater., 2002, 38(3):278~282. 

    22. [22]

      V Gupta, T Nakajima, Y Ohzawa et al. J. Fluorine Chem., 2003, 120:143~150. 

    23. [23]

      P Lam, R Yazami. J. Power Sources, 2006, 153:354~359. 

    24. [24]

      R Yazami, P Hany, P Masset et al. Mol. Cryst. Liq. Cryst., 1998, 310:397~402. 

    25. [25]

      J Giraudeta, C Delabarrea, K Guérina et al. J. Power Sources, 2006, 158:1365~1372. 

    26. [26]

      F Chamssedine, M Dubois, K Guérin et al. Chem. Mater., 2007, 19:161~172. 

    27. [27]

      S S Zhang, D Foster, J Read. J. Power Sources, 2009, 188:601~605. 

    28. [28]

      S S Zhang, D Foster, J Read. J. Power Sources, 2009, 191:648~652. 

    29. [29]

      L Zhu, Y Pan, L Li et al. J. Electrochem. Sci., 2016, 11:14~22.

    30. [30]

      Y Dai, S Cai, L Wu et al. J. Mater. Chem. A, 2014, 2:20896~20901. 

    31. [31]

      Y Dai, Y Fang, S Cai et al. J. Electrochem. Soc., 2017, 164(2):A1~A7.

    32. [32]

      Y Li, Y Chen, W Feng et al. J. Power Sources, 2011, 196:2246~2250. 

    33. [33]

      P Meduri, H Chen, X Chen et al. Electrochem. Commun., 2011, 13:1344~1348.

    34. [34]

      H Groult, C M Julien, A Bahloul et al. Electrochem. Commun., 2011, 13:1074~1076. 

    35. [35]

      W Yang, Y Dai, S Cai et al. J. Power Sources, 2014, 255:37~42. 

    36. [36]

      M A Reddy, B Breitung, M Fichtner. ACS Appl. Mater. Interf., 2013, 5:11207~11211. 

    37. [37]

      Y Li, W Feng. J. Power Sources, 2015, 274:1292~1299. 

    38. [38]

      P H Smith, R B Sepe Jr, K G Waterman et al. J. Power Sources, 2016, 327:495~506. 

    39. [39]

      N G Nair, M Blanco, W West et al. J. Phys. Chem. A, 2009, 113:5918~5926. 

    40. [40]

      L F Li, H S Lee, H Li et al. Electrochem. Commun., 2009, 11:2296~2299. 

  • 加载中
    1. [1]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    12. [12]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    15. [15]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    16. [16]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    18. [18]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    19. [19]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    20. [20]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(78)
  • Abstract views(2568)
  • HTML views(858)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return