Citation: Yu Jiazhao, Li Yanbin, Liu Yanli, Zhuang Rubin. Preparation of Surface Molecularly Imprinted Polymers and Its Application in Biomolecular Separation and Recognition[J]. Chemistry, ;2018, 81(8): 675-680. shu

Preparation of Surface Molecularly Imprinted Polymers and Its Application in Biomolecular Separation and Recognition

  • Corresponding author: Li Yanbin, lyb2010@nuc.edu.cn
  • Received Date: 4 March 2018
    Accepted Date: 4 June 2018

Figures(3)

  • Surface molecular imprinting technology is a new type of molecular imprinting technology. It solves the problems of difficulty in incomplete template removal, low binding capacity, poor chromatographic performance and poor mechanical properties. Surface molecular imprinting polymers have attracted much attention due to their outstanding advantages, such as good chemical stability, high specificity and strong practicality. In recent years, it has been used widely in the separation and analysis of biochemical samples. This article describes the preparation of surface molecularly imprinted polymers, compares the advantages and disadvantages of different methods, and summarizes the application of surface molecular imprint in the separation and analysis.
  • 加载中
    1. [1]

      G Wulff, A Sarhan. Angew. Chem. Int. Ed., 1972, 11(4):341.

    2. [2]

      R Arshady, K Mosbach. Makromol. Chem., 1981, 182:687~692. 

    3. [3]

      G Vlatakis, L I Andersson, K Mosbach et al. Nature, 1993, 361(6413):645~647. 

    4. [4]

      K Haupt. Anal. Chem., 2003, 75(17):376 A~383 A. 

    5. [5]

      L Chen, S Xu, J Li. Chem. Soc. Rev., 2011, 40(5):2922~2942. 

    6. [6]

      Y Zhang, Y Li, Y Hu et al. J. Chromatogr. A, 2010, 1217(47):7337~7344. 

    7. [7]

      Z Y Chen, L Xu, Y Liang et al. Adv. Mater., 2010, 22(13):1488. 

    8. [8]

      C Zheng, X L Zhang, W Liu et al. Adv. Mater., 2013, 25(41):5922. 

    9. [9]

      A Sarafraz-Yazdi, N Razavi. Trac-Trend. Anal. Chem., 2015, 73:81~90. 

    10. [10]

      W Wan, M Biyikal, R Wagner et al. Angew. Chem. Int. Ed., 2013, 52(27):7023~7027. 

    11. [11]

      D Xu, W Zhu, C Wang et al. Chem. Commun., 2014, 50(91):14133~14136. 

    12. [12]

      A Nezhadali, M Mojarrab. J. Electroanal. Chem., 2015, 744:85~94. 

    13. [13]

      H Chasta, R N Goyal. Talanta, 2014, 125:167~173. 

    14. [14]

      C Mao, X Xie, X Liu et al. Mater. Sci. Eng., 2017, 77:84~91. 

    15. [15]

      I Chianella, A Guerreiro, E Moczko et al. Anal. Chem., 2013, 85(17):8462. 

    16. [16]

      O Brggemann, A Visnjevski, R Burch et al. Anal. Chim. Acta, 2004, 504(1):81~88. 

    17. [17]

      J Zhou, X W He. Anal. Chim. Acta, 1999, 381(1):85~91. 

    18. [18]

      L I Andersson. Anal. Chem., 1996, 68:111~117. 

    19. [19]

      M Pesawento, G D'agostino, R Biesuz et al. Electroanalysis, 2012, 24(4):813~824. 

    20. [20]

      Z Iskierko, P S Sharma, K Bartold et al. Biotechnol. Adv., 2016, 34(1):30~46. 

    21. [21]

      M Dabrowski, P Lach, M Cieplak et al. Biosens. Bioelectron., 2018, 102:17~26. 

    22. [22]

      F Lulkam, S Iqbal, J P Chambers et al. J. Mater. Sci. Eng. C, 2000, 11(2):101~105. 

    23. [23]

       

    24. [24]

      G Wulff, W Best, A Akelah. React. Polym. Exch. Sorb., 1984, 2:167~174. 

    25. [25]

      L Andersson, B Sellergren, K Mosbach. Tetrahed. Lett., 1984, 25:5211~5214. 

    26. [26]

      M Kempe, K Mosbach. Tetrahed. Lett., 1995, 36:3563~3566. 

    27. [27]

      S J Cho, H B Noh, M S Won et al. Biosens. Bioelectron., 2018, 99:471~478. 

    28. [28]

      C C Lee, S H Peng, L Shen et al. Mol. Cell, 2017, 68(1):89~103. 

    29. [29]

      K J Shea, D A Spivak. J. Am. Chem. Soc., 1993, 115(8):3368~3369. 

    30. [30]

      A Aherne, C Alexander, M J Payne et al. J. Am. Chem. Soc., 1996, 118(36):8771~8772. 

    31. [31]

      M Li, R Li, J Tan et al. Talanta, 2013, 107:203~210. 

    32. [32]

      S Liao, W Zhang, L Wei et al. Appl. Surf. Sci., 2016, 364:579~588. 

    33. [33]

      X Wang, P Huang, X Ma et al. J. Chromatogr. A, 2018, 1537:35~42. 

    34. [34]

      W Zhang, H Zhang, Q Zhang et al. Sep. Purif. Technol., 2011, 81(3):411~417. 

    35. [35]

      X Kan, Q Zhao, Z Zhang et al. Talanta, 2008, 75(1):22~26. 

    36. [36]

      S Yan, Z Gao, Y Fang et al. Dyes Pigments, 2007, 74(3):572~577. 

    37. [37]

      S Boonpangrak, M J Whitcombe, V Prachayasittikul et al. Biosen. Bioelectron., 2006, 22(3):349~354. 

    38. [38]

      Y Li, X Li, C Dong et al. Biosens. Bioelectron., 2009, 25(2):306~312. 

    39. [39]

      X Wei, X Li, S M Usson. Biomacromolecules, 2005, 6(2):1113~1121. 

    40. [40]

      H Lee, B Kim. Biosens. Bioelectron., 2009, 25(3):587~591. 

    41. [41]

      S A Piletsky, H Matuschewski, M Ulbricht et al. Macromolecules, 2000, 33(8):3092~3098. 

    42. [42]

       

    43. [43]

    44. [44]

      A Mehdinia, S Dadkhah, K T Baradaran et al. J. Chromatogr. A, 2014, 1364:12~19. 

    45. [45]

      R Gao, Y Hao, L Zhang et al. Chem. Eng. J., 2016, 284:139~148. 

    46. [46]

      L Li, A H Peng, Z Z Lin et al. Food Chem., 2017, 1035:25~30.

    47. [47]

      Y Tan, I Ahmad, T X Wei. Chin. Chem. Lett., 2015, 26(6):797~800. 

    48. [48]

       

    49. [49]

       

    50. [50]

       

    51. [51]

      M Dabrowski, P Lach, M Cieplak et al. Biosens. Bioelectron., 2017, 102:204~210.

    52. [52]

      J Luo, J Huang, Y Wu et al. Biosens. Bioelectron., 2017, 94:39~46. 

    53. [53]

      Y Sun, S Zhong. Colloid. Surf. B, 2017, 159:131~138. 

    54. [54]

      Y Liu, Y Wang, Q Dai et al. Anal. Chim. Acta, 2016, 936:168~178. 

    55. [55]

      D Duan, H Yang, Y Ding et al. Electrochim. Acta, 2018, 261:160~166. 

    56. [56]

      C J Zhao, X H Ma, J P Li. Chin. J. Anal. Chem., 2017, 45(9):1360~1366. 

    57. [57]

      J P Fan, Z Y Tian, S Tong et al. Food Chem., 2013, 141(4):3578~3585. 

    58. [58]

      P Svoboda, A Combes, J Petit et al. Talanta, 2015, 144:1021~1029. 

    59. [59]

      M Monier, A M Elsokkary. Int. J. Biol. Macromol., 2010, 47(2):207~213. 

    60. [60]

      H Qiu, Y Xi, F Lu et al. Spectrochim. Acta A, 2012, 86(3):456~460. 

    61. [61]

      L Chen, H T Lian, X Y Sun et al. Anal. Biochem., 2017, 526:58~65. 

    62. [62]

      Widayani, Yanti, T D K Wungu et al. Proc. Eng., 2017, 170:84~87. 

    63. [63]

      H Shekarchizadeh, A A Ensafi, M Kadivar. Mater. Sci. Eng. C, 2013, 33(6):3553~3561. 

    64. [64]

      M You, S Yang, F Jiao et al. Electrochim. Acta, 2016, 199:133~141. 

    65. [65]

      S Diltemiz, D Hur, A Ersoz et al. Biosens. Bioelectron., 2009, 25(3):599~603. 

    66. [66]

      L Q Lin, Y C Li, Q Fu et al. Polymer, 2006, 47(11):3792~3798. 

    67. [67]

      P Liu, X Zhang, W Xu et al. Sensor. Actuat. B, 2012, 163(1):84~89. 

    68. [68]

      M Nakamura, M Ono, T Nakajima et al. J. Pharmaceut. Biomed., 2005, 37(2):231~237. 

    69. [69]

      G Ertürk, R Lood. Sens. Actuat. B, 2018, 258:535~543. 

    70. [70]

      N Idil, M M Hedstr, A Denizli et al. Biosens. Bioelectron., 2016, 87:807~815. 

    71. [71]

      Y Liu, T Shen, L Hu et al. Sens. Actuat. B, 2017, 253:1188~1193. 

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    8. [8]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    15. [15]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(36)
  • Abstract views(3037)
  • HTML views(883)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return