Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature
- Corresponding author: BAI Shu-li, wyuchembsl@126.com
Citation:
BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(6): 723-727.
PARVULESCU V, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998,46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X
BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988,19(31):369-531.
BRANDENBERGER S, KRÖCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008,50(4):492-531. doi: 10.1080/01614940802480122
WANG L, ZHAO J, BAI S, ZHAO H, ZHU Z. Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chem Eng J, 2014,254:399-409. doi: 10.1016/j.cej.2014.05.096
CASANOVA M, SCHERMANZ K, LLORCAl J, TROVARELLI A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2[J]. Catal Today, 2012,184(1):227-236. doi: 10.1016/j.cattod.2011.10.035
CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011,170(2/3):531-537.
SUÁREZ S, MARTÍA J A, YATES M, AVILA P, BLANCO J. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts[J]. J Catal, 2005,229(1):227-236.
KOMATSU T, NAGAI T, YASHIMA T. Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia[J]. Res Chem Intermed, 2006,32(3/4):291-304.
LIU Q, LIU Z, XIE G, HUANG Z. Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3[J]. Catal Lett, 2005,101(1/2):27-30.
SHAFFER P. A review of the structure of silicon carbide[J]. Acta Crystallogr Sect B:Struct Sci Cryts Eng Mater, 1969,25(3):477-488. doi: 10.1107/S0567740869002457
EOM J H, KIM Y W, RAJU S. Processing and properties of macroporous silicon carbide ceramics:A review[J]. J Asian Ceram Soc, 2013,1(3):220-242. doi: 10.1016/j.jascer.2013.07.003
BERTHER A, THOMANN A, AIRES F C S, BRUN M, DERANLOT C, BERTOLINI J, ROZENBAUM J, BRAULT P, ANDREAZZA P. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition:Characterization and catalytic properties[J]. J Catal, 2000,190(1):49-59.
ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59.
DUONG-VIET C, BA H, LIU Y, TRUONG-PHUOC L, NHUT J M, PHAM-HUU C. Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst[J]. Chin J Catal, 2014,35(6):906-913. doi: 10.1016/S1872-2067(14)60116-9
XIE S, GUO X N, TONG X L, WANG Y Y, GUO X Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chem Commun, 2014,50(2):228-230. doi: 10.1039/C3CC47019A
BAI S, LI H, WANG L, GUAN Y, JIANG S. The properties and mechanism of CuO modified carbon nanotube for NOx removal[J]. Catal Lett, 2014,144(2):216-221. doi: 10.1007/s10562-013-1157-5
KELLER N, PHAM-HUU C, ESTOURNōS C, LENOUX M J. Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation:Role of SiC surface heterogeneity and nature of the active phase[J]. Appl Catal A:Gen, 2002,234(1/2):191-205.
LIU Q, LIU Z, SU J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catal Today, 2010,158(3/4):370-376.
RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995,157(2):523-535.
TOPSØE N, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies[J]. J Catal, 1995,151(1):226-240.
AMORES J G, ESCRIBANO V S, RAMIS G, BUSCA G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Appl Catal B:Environ, 1997,13(1):45-58. doi: 10.1016/S0926-3373(96)00092-6
ZHU Z, LIU Z, NIU H, LIU S, HU T, LIU T, XIE Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001,197(1):6-16.
HUANG B, HUANG R, JIN D, YE D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catal Today, 2007,126(3/4):279-283.
BAI S, ZNAO J, WANG L, ZHU Z. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catal Today, 2010,158(3/4):393-400.
ZHANG L, ZHANG D, ZHANG J, CAI S, FANG C, HUANG L, LI H, GAO R, SHI L. Nanoscale design of meso-TiO2@MnOx-CeOx/CNTs with a core. shell structure as DeNOx catalysts:Promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013,5(20):9821-9829. doi: 10.1039/c3nr03150k
Huimin Liu , Kezhi Li , Xin Zhang , Xuemin Yin , Qiangang Fu , Hejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041