Citation: BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 723-727. shu

Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature

  • Corresponding author: BAI Shu-li, wyuchembsl@126.com
  • Received Date: 10 March 2020
    Revised Date: 11 May 2020

    Fund Project: National Natural Science Foundation of China 21006065The project was supported by National Natural Science Foundation of China (21006065)

Figures(7)

  • Silicon carbide supported copper oxide (CuO/SiC) catalysts were prepared by wet impregnation method and characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS); their catalytic performance in the selective catalytic reduction of NOx with NH3 at low temperature was investigated with a mimic flue gas. The results indicate that the catalytic performance of CuO/SiC in the selective catalytic reduction NO with NH3 is related to the loading of copper oxide and reaction temperature. The CuO/SiC catalyst with a CuO loading of 5% exhibits high activity at low temperature, where SO2 shows slightly inhibition upon the NO reduction activity; the NO reduction reaction over CuO/SiC may take place between the adsorbed ammonia and the gaseous or weakly adsorbed NO. Such CuO/SiC catalysts may provide a new choice for the practical removal of NOx in industry.
  • 加载中
    1. [1]

      PARVULESCU V, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998,46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X

    2. [2]

      BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988,19(31):369-531.  

    3. [3]

      BRANDENBERGER S, KRÖCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008,50(4):492-531. doi: 10.1080/01614940802480122

    4. [4]

      WANG L, ZHAO J, BAI S, ZHAO H, ZHU Z. Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chem Eng J, 2014,254:399-409. doi: 10.1016/j.cej.2014.05.096

    5. [5]

      CASANOVA M, SCHERMANZ K, LLORCAl J, TROVARELLI A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2[J]. Catal Today, 2012,184(1):227-236. doi: 10.1016/j.cattod.2011.10.035

    6. [6]

      CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011,170(2/3):531-537.  

    7. [7]

      SUÁREZ S, MARTÍA J A, YATES M, AVILA P, BLANCO J. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts[J]. J Catal, 2005,229(1):227-236.

    8. [8]

      KOMATSU T, NAGAI T, YASHIMA T. Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia[J]. Res Chem Intermed, 2006,32(3/4):291-304.  

    9. [9]

      LIU Q, LIU Z, XIE G, HUANG Z. Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3[J]. Catal Lett, 2005,101(1/2):27-30.  

    10. [10]

      SHAFFER P. A review of the structure of silicon carbide[J]. Acta Crystallogr Sect B:Struct Sci Cryts Eng Mater, 1969,25(3):477-488. doi: 10.1107/S0567740869002457

    11. [11]

      EOM J H, KIM Y W, RAJU S. Processing and properties of macroporous silicon carbide ceramics:A review[J]. J Asian Ceram Soc, 2013,1(3):220-242. doi: 10.1016/j.jascer.2013.07.003

    12. [12]

      BERTHER A, THOMANN A, AIRES F C S, BRUN M, DERANLOT C, BERTOLINI J, ROZENBAUM J, BRAULT P, ANDREAZZA P. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition:Characterization and catalytic properties[J]. J Catal, 2000,190(1):49-59.  

    13. [13]

      ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59.  

    14. [14]

      DUONG-VIET C, BA H, LIU Y, TRUONG-PHUOC L, NHUT J M, PHAM-HUU C. Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst[J]. Chin J Catal, 2014,35(6):906-913. doi: 10.1016/S1872-2067(14)60116-9

    15. [15]

      XIE S, GUO X N, TONG X L, WANG Y Y, GUO X Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chem Commun, 2014,50(2):228-230. doi: 10.1039/C3CC47019A

    16. [16]

      BAI S, LI H, WANG L, GUAN Y, JIANG S. The properties and mechanism of CuO modified carbon nanotube for NOx removal[J]. Catal Lett, 2014,144(2):216-221. doi: 10.1007/s10562-013-1157-5

    17. [17]

      KELLER N, PHAM-HUU C, ESTOURNōS C, LENOUX M J. Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation:Role of SiC surface heterogeneity and nature of the active phase[J]. Appl Catal A:Gen, 2002,234(1/2):191-205.

    18. [18]

      LIU Q, LIU Z, SU J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catal Today, 2010,158(3/4):370-376.

    19. [19]

      RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995,157(2):523-535.  

    20. [20]

      TOPSØE N, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies[J]. J Catal, 1995,151(1):226-240.  

    21. [21]

      AMORES J G, ESCRIBANO V S, RAMIS G, BUSCA G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Appl Catal B:Environ, 1997,13(1):45-58. doi: 10.1016/S0926-3373(96)00092-6

    22. [22]

      ZHU Z, LIU Z, NIU H, LIU S, HU T, LIU T, XIE Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001,197(1):6-16.  

    23. [23]

      HUANG B, HUANG R, JIN D, YE D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catal Today, 2007,126(3/4):279-283.  

    24. [24]

      BAI S, ZNAO J, WANG L, ZHU Z. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catal Today, 2010,158(3/4):393-400.  

    25. [25]

      ZHANG L, ZHANG D, ZHANG J, CAI S, FANG C, HUANG L, LI H, GAO R, SHI L. Nanoscale design of meso-TiO2@MnOx-CeOx/CNTs with a core. shell structure as DeNOx catalysts:Promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013,5(20):9821-9829. doi: 10.1039/c3nr03150k

  • 加载中
    1. [1]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    2. [2]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    14. [14]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

Metrics
  • PDF Downloads(4)
  • Abstract views(488)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return