Citation: WEI Li-hong, LIANG Fa-guang, FANG Fan, MA Ting-ting, YANG Tian-hua. Effect of phosphorus on ash fusion characteristics and mineral transformation during co-combustion of sewage sludge and coal[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 129-137. shu

Effect of phosphorus on ash fusion characteristics and mineral transformation during co-combustion of sewage sludge and coal

  • Corresponding author: WEI Li-hong, weilihong@sau.edu.cn
  • Received Date: 5 September 2018
    Revised Date: 24 December 2018

    Fund Project: the Fund Project of the Education Department of Liaoning Province L201621the National Natural Science Foundation of China 51576135The project was supported by the National Natural Science Foundation of China (51576135) and the Fund Project of the Education Department of Liaoning Province(L201621)

Figures(5)

  • The influence of inorganic phosphorus on ash fusion characteristics of sewage sludge and coal were investigated by ash fusion temperature (AFT) detector and X-ray fluorescence (XRF), and the transformation of containing phosphate minerals of blended ashes with different temperatures between crystal and amorphous were explored using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For the ash sample with high contents of Al2O3, which has higher AFT, raising content of phosphorus significantly results in a reduced ash fusion point, in particular it is lowered by 126℃ at 0-4% P2O5 content. But it has little effect on ash with high alkaline content. Aluminum phosphate (AlPO4) crystals is the major phosphor containing minerals in low temperature ashes, witch react with calcium minerals (CaSO4) and hematite (Fe2O3) to form Ca3(PO4)2 crystal and (Fe2O3)0.252(P2O5)0.748 glass phase along with increasing temperature. Meanwhile, (Fe2O3)0.252(P2O5)0.748 in glass phase increases with an increase in phosphorus content, which may be the primary cause of AFT decreasing.
  • 加载中
    1. [1]

      WANG K, ZHENG Y, ZHU X, BREWER C E, BROWN R C. Ex-situ catalytic pyrolysis of wastewater sewage sludge-a micro-pyrolysis study[J]. Biotechnol Technol, 2017,232:229-234.  

    2. [2]

      ZHANG Q G, HU J J, LEE DUU-JONG, CHANG YINGJU, LEE YU-JEN. Sludge treatment:Current research trends[J]. Biotechnol Technol, 2017,243:1159-1172.  

    3. [3]

      WEI Li-hong, MA Ting-ting, YANG Tian-hua, LI Run-dong. Slagging characteristics and minerals conversion of co-firing Ash of coal and sludge at high temperature[J]. Proc CSEE, 2015,35(18):4697-4702.  

    4. [4]

      ZHANG Q, LIU H F, QIAN Y P, XU M H, LI W F, XU J L. The influence of phosphorus on ash fusion temperature of sludge and coal[J]. Fuel Process Technol, 2013,110(41):218-226.  

    5. [5]

      LI W D, LI M, LI W F, LIU H F. Study on the ash fusion temperatures of coal and sewage sludge mixtures[J]. Fuel, 2010,89(7):1566-1572. doi: 10.1016/j.fuel.2009.08.039

    6. [6]

      LI Ming, LI Wei-dong, LI Wei-feng, LIU Hai-feng. Influence of sewage sludge addition on Shenfu coal ash fusion temperatures[J]. J Fuel Chem Technol, 2009,37(4):416-420. doi: 10.3969/j.issn.0253-2409.2009.04.006 

    7. [7]

      XU H, ZHANG H, SHAO L, HE P. Fraction distributions of phosphorus in sewage sludge and sludge ash[J]. Waste Biomass Valor, 2012,3(3):355-361. doi: 10.1007/s12649-011-9103-5

    8. [8]

      FOLGUERAS M B, ALONSO M, FOLGUERAS J R. Modification of lignite ash fusion temperatures by the addition of different types of sewage sludge[J]. Fuel Process Technol, 2015,137(131):348-355.  

    9. [9]

      CUI H, NINOMIYA Y, MASUI M, MIZUKOSHI H, SAKANO T, KANAOKA C. Fundamental behaviors in combustion of raw sewage sludge[J]. Energy Fuels, 2005,20(1):77-83.  

    10. [10]

      ZHANG L, ITO M, SATO A, NINOMIYA Y, SAKANO T, KANAOKA C, MASUI M. Combustibility of dried sewage sludge and its mineral transformation at different oxygen content in drop tube furnace[J]. Fuel Process Technol, 2004,85(8/10):983-1011.  

    11. [11]

      OHBUCHI A, SAKAMOTO J, KITANO M, NAKAMURA T. X-ray fluorescence analysis of sludge ash from sewage disposal plant[J]. X-Ray Spectr, 2008,37(5):544-550. doi: 10.1002/xrs.v37:5

    12. [12]

      VAN DYK J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009,88(6):1057-1063. doi: 10.1016/j.fuel.2008.11.034

    13. [13]

      TOMASZ K, MARCO M, MICHAEL I, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008,87(12):2824-2837. doi: 10.1016/j.fuel.2008.01.024

    14. [14]

      WANG L, SKJEVRAK G, HUSTAD J E, GRØNLI M G. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Process Technol, 2012,96:88-97. doi: 10.1016/j.fuproc.2011.12.022

    15. [15]

      FOLGUERAS M, DÍAZ R, XIBERTA J, GARCÍA M, PIS J. Influence of sewage sludge addition on coal ash fusion temperatures[J]. Energy Fuels, 2005,19(6):2562-2570. doi: 10.1021/ef058005a

    16. [16]

      WEI Li-hong, MA Ting-ting, LI Run-dong, YANG Tian-hua, LI Yan-ji, WEN Li-na. Effect of acidic compositions on ash fusion temperatures[J]. J Fuel Chem Technol, 2014,10(24):1205-1211.  

    17. [17]

      CIESLIK B, KONIECZKA P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of "no solid waste generation" and analytical methods[J]. J Clean Prod, 2017,142:1728-1740. doi: 10.1016/j.jclepro.2016.11.116

    18. [18]

      FANG L, LI J, DONATELLO S, CHEESEMAN C R, WANG Q, POON C S, TSANG D C W. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation[J]. Biochem Eng J, 2018,348:74-83.  

    19. [19]

      VILLEN GUZMAN M, GUEDES P, COUTO N, OTTOSEN L M, RIBEIRO A B, RODRIGUEZ MAROTO J M. Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control[J]. Electrochim Acta, 2018,287:49-59. doi: 10.1016/j.electacta.2018.08.032

    20. [20]

      MENG Xiang-dong, HUANG Qun-xing, YAN Jian-hua, GAO Hua-ping. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC J, 2018,69(7):3208-3215.  

    21. [21]

      NINOMIYA Y, ZHANG L, SAKANO T, KANAOKA C H, MASUI M. Transformation of mineral and emission of particulate matter during co-combustion of coal with sewage sludge[J]. Fuel, 2004,83(6):751-764. doi: 10.1016/j.fuel.2003.09.022

    22. [22]

      YIN Li-bao, DENG Chang-ya, ZHANG Cheng, FANG Qing-yan, XU Qi-sheng, CHEN Gang. Fusion characteristics in co-combustion of coal with industrial and municipal sludge[J]. J Fuel Chem Technol, 2014,42(9):1068-1076. doi: 10.3969/j.issn.0253-2409.2014.09.007 

  • 加载中
    1. [1]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    2. [2]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    3. [3]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    4. [4]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    5. [5]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    6. [6]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    7. [7]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    10. [10]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    18. [18]

      Zhuoxi Li Jieshu Wei Yanqin Cheng . Practice of Integrating Ideological and Political Education into Inorganic Chemistry Curriculum. University Chemistry, 2024, 39(2): 255-262. doi: 10.3866/PKU.DXHX202308084

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(4)
  • Abstract views(887)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return