Citation: HUANG Hui-wen, ZHU Hui, ZHANG Shan-he, ZHANG Qiang, LI Chun-yi. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 74-83. shu

Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites

  • Corresponding author: LI Chun-yi, chuyli@upc.edu.cn
  • Received Date: 9 October 2018
    Revised Date: 14 November 2018

    Fund Project: Research Fund for the Doctoral Programme of Higher Education 14CX06035AThe project was supported by the National 973 Program of China(2012CB215006) and Research Fund for the Doctoral Programme of Higher Education(14CX06035A)the National 973 Program of China 2012CB215006

Figures(6)

  • A series of H-ZSM-5 zeolites with a silicon to aluminum ratio of 50-4000 but similar crystal size were synthesized and characterized by XRD, N2 sorption, NH3-TPD and Py-FTIR; the intrinsic effect of silicon to aluminum ratio on the selectivity to propene in the conversion of methanol to propene (MTP) was investigated. The results show that a complete conversion of methanol can be initially achieved over H-ZSM-5 with a silicon to aluminum ratio from 50 to 1600 and then the initial conversion of methanol decreases progressively with further increasing the silicon to aluminum ratio. Meanwhile, the selectivity to propene increases monotonically with an increase in the silicon to aluminum ratio of H-ZSM-5 for MTP with a complete methanol conversion, suggesting that a high Si/Al ratio for H-ZSM-5 may enhance the propagation of the alkene-based methylation/cracking cycle relative to the arene-based methylation/dealkylation cycle in MTP. A critical value of acid density, viz., [AS]S, is required to achieve the maximum propene selectivity for MTP with a complete methanol conversion; this critical[AS]S value is 0.175 μmol/m2 for the H-ZSM-5 zeolite under current reaction conditions.
  • 加载中
    1. [1]

      MEI C, WEN P, LIU Z, LIU H, WANG Y, YANG W, XIE Z, HUA W, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008,258(1):243-249. doi: 10.1016/j.jcat.2008.06.019

    2. [2]

      LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun, 2009,10(11):1506-1509. doi: 10.1016/j.catcom.2009.04.004

    3. [3]

      HUANG H, MENG X, CHEN C, ZHANG M, MENG Z, LI C, CUI Q. Effect of phosphorus addition on the performance of hierarchical ZSM-11 catalysts in methanol to propene reaction[J]. Catal Lett, 2016,146(11):2357-2363. doi: 10.1007/s10562-016-1867-6

    4. [4]

      SUN C, DU J, LIU J, YANG Y, REN N, SHEN W, XU H, TANG Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction[J]. Chem Commun, 2010,46(15):2671-2673. doi: 10.1039/b925850g

    5. [5]

      ZHAO G, TENG J, XIE Z, JIN W, YANG W, CHEN Q, TANG Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. J Catal, 2007,248(1):29-37. doi: 10.1016/j.jcat.2007.02.027

    6. [6]

      CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005,106(1/4):103-107.  

    7. [7]

      HICKMAN D A, SCHMIDT L D. Production of syngas by direct catalytic oxidation of methane[J]. Science, 1993,259(5093):343-346. doi: 10.1126/science.259.5093.343

    8. [8]

      ASADULLAH M, ITO S, KUNIMORI K, YAMADA M, TOMISHIGE K. Biomass gasification to hydrogen and syngas at low temperature:Novel catalytic system using fluidized-bed reactor[J]. J Catal, 2002,208(2):255-259. doi: 10.1006/jcat.2002.3575

    9. [9]

      WU W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011,66(20):4722-4732. doi: 10.1016/j.ces.2011.06.036

    10. [10]

      CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977,47(2):249-259. doi: 10.1016/0021-9517(77)90172-5

    11. [11]

      YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012,24:44-47. doi: 10.1016/j.catcom.2012.03.013

    12. [12]

      LEE Y J, KIM Y W, VISWANADHAM N, JUN K W, BAE J W. Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction[J]. Appl Catal A:Gen, 2010,374(1/2):18-25.  

    13. [13]

      ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. J Ind Eng Chem, 2015,27:297-306. doi: 10.1016/j.jiec.2015.01.004

    14. [14]

      OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012,51(24):5810-5831. doi: 10.1002/anie.201103657

    15. [15]

      MENG X, YU Q, GAO Y, ZHANG Q, LI C, CUI Q. Enhanced propene/ethene selectivity for methanol conversion over pure silica zeolite:Role of hydrogen-bonded silanol groups[J]. Catal Commun, 2015,61:67-71. doi: 10.1016/j.catcom.2014.12.011

    16. [16]

      HU S, GONG Y, XU Q, LIU X, ZHANG Q, ZHANG L, DOU T. Highly selective formation of propylene from methanol over high-silica EU-1 zeolite catalyst[J]. Catal Commun, 2012,28:95-99. doi: 10.1016/j.catcom.2012.08.011

    17. [17]

      CHANG C D, CHU C T W, SOCHA R F. Methanol conversion to olefins over ZSM-5:Ⅰ. Effect of temperature and zeolite SiO2Al2O3[J]. J Catal, 1984,86(2):289-296. doi: 10.1016/0021-9517(84)90374-9

    18. [18]

      ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites:Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun, 2008(41):5164-5166. doi: 10.1039/b809718f

    19. [19]

      ZHU Q, KONDO J N, YOKOI T, SETOYAMA T, YAMAGUCHI M, TAKEWAKI T, DOMEN K, TATSUMI T. The influence of acidities of boron-and aluminium-containing MFI zeolites on co-reaction of methanol and ethene[J]. Phys Chem Chem Phys, 2011,13(32):14598-14605. doi: 10.1039/c1cp20338j

    20. [20]

      HASSANPOUR S, TAGHIZADEH M, YARIPOUR F. Preparation, characterization, and activity evaluation of H-ZSM-5 catalysts in vapor-phase methanol dehydration to dimethyl ether[J]. Ind Eng Chem Res, 2010,49(9):4063-4069. doi: 10.1021/ie9013869

    21. [21]

      FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014,116:529-537. doi: 10.1016/j.fuel.2013.08.036

    22. [22]

      WAN Z, WU W, LI G, WANG C, YANG H, ZHANG D. Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion[J]. Appl Catal A:Gen, 2016,523:312-320. doi: 10.1016/j.apcata.2016.05.032

    23. [23]

      MICHELS N L, MITCHELL S, PEREZ-RAMIREZ J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons[J]. ACS Catal, 2014,4(8):2409-2417. doi: 10.1021/cs500353b

    24. [24]

      ZHANG C, WU Q, LEI C, PAN S, BIAN C, WANG L, MENG X, XIAO F S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction[J]. Ind Eng Chem Res, 2017,56(6):1450-1460. doi: 10.1021/acs.iecr.7b00062

    25. [25]

      WEI R, LI C, YANG C, SHAN H. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5[J]. J Nat Gas Chem, 2011,20(3):261-265. doi: 10.1016/S1003-9953(10)60198-3

    26. [26]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    27. [27]

      BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion[J]. J Chem Technol Biot, 1996,66(2):183-191. doi: 10.1002/(ISSN)1097-4660

    28. [28]

      PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963,2(5):371-379. doi: 10.1016/0021-9517(63)90102-7

    29. [29]

      OTHMAN I, MOHAMED R M, IBRAHIM I A, MOHAMED M M. Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye[J]. Appl Catal A:Gen, 2006,299:95-102. doi: 10.1016/j.apcata.2005.10.016

    30. [30]

      FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021

    31. [31]

      CAMPBELL S M, BIBBY D M, CODDINGTON J M, HOWE R F. Dealumination of HZSM-5 zeolites:Ⅱ. Methanol to gasoline conversion[J]. J Catal, 1996,161(1):350-358. doi: 10.1006/jcat.1996.0192

    32. [32]

      STØCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior1[J]. Microporous Mesoporous Mater, 1999,29(1/2):3-48.  

    33. [33]

      BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBOC L, BORDIGAC S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007,249(2):195-207. doi: 10.1016/j.jcat.2007.04.006

    34. [34]

      HAW J F, SONG W G, MARCUD D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003,36(5):317-326. doi: 10.1021/ar020006o

    35. [35]

      BJØRGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009,142(1/2):90-97.  

    36. [36]

      SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006,128(46):14770-14771. doi: 10.1021/ja065810a

    37. [37]

      SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007,111(49):17981-17984. doi: 10.1021/jp077331j

    38. [38]

      SVELLE S, RØNNING P O, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions:1. Coreaction of[12C] ethene and[13C] methanol[J]. J Catal, 2004,224(1):115-123. doi: 10.1016/j.jcat.2004.02.022

    39. [39]

      SVELLE S, RØNNING P O, OLSBYE U, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of[12C] propene or[12C] n-butene and[13C] methanol[J]. J Catal, 2005,234(2):385-400. doi: 10.1016/j.jcat.2005.06.028

    40. [40]

      HILL I M, AL HASHIMI S, BHAN A. Kinetics and mechanism of olefin methylation reactions on zeolites[J]. J Catal, 2012,285(1):115-123. doi: 10.1016/j.jcat.2011.09.018

    41. [41]

      HILL I M, NG Y S, BHAN A. Kinetics of butene isomer methylation with dimethyl ether over zeolite catalysts[J]. ACS Catal, 2012,2(8):1742-1748. doi: 10.1021/cs300317p

    42. [42]

      SUN X, MULLER S, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. J Catal, 2014,314:21-31. doi: 10.1016/j.jcat.2014.03.013

    43. [43]

      ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013,303:135-140. doi: 10.1016/j.jcat.2013.03.021

    44. [44]

      KHARE R, LIU Z, HAN Y, BHAN A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5[J]. J Catal, 2017,348:300-305. doi: 10.1016/j.jcat.2017.02.022

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    7. [7]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    8. [8]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    9. [9]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    18. [18]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    19. [19]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    20. [20]

      Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764

Metrics
  • PDF Downloads(12)
  • Abstract views(2167)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return