Citation: XU Bin, GAO Rui, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen. Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1181-1186. shu

Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature

  • Corresponding author: DAI Zheng-hua, chinadai@ecust.edu.cn
  • Received Date: 10 June 2019
    Revised Date: 31 July 2019

    Fund Project: National Natural Science Foundation of China 21776087National Key R & D Program of China 2018YFB0605000Program of Shanghai Technology Research Leader 19XD1434800The project was supported by National Key R & D Program of China (2018YFB0605000), National Natural Science Foundation of China (21776087) and Program of Shanghai Technology Research Leader (19XD1434800)

Figures(4)

  • The characteristics of high temperature rapid pyrolysis of oil slurry were studied by using a rapid pyrolysis device of high-frequency furnace. The effects of pyrolysis temperature and nitrogen flow rate on the compositions and yields of gas and solid phase products were investigated. The results show that the temperature is the key factor to affect the yields of gas phase products. The gas phase products are mainly methane, hydrogen and ethylene. Higher temperature can increase the yields of hydrogen and methane, while the yield of ethylene is affected by the secondary reaction at high temperature and decreased gradually after reaching the maximum at 800℃. The yields of ethane and propylene are lower, and gradually decrease after reaching the maximum at 700℃ due to the secondary reaction. A small amount of acetylene is formed when the temperature is higher than 800℃ and the yield of acetylene will be increased by increasing the temperature. Meanwhile, increasing the nitrogen flow rate can reduce the partial pressure of methane and hydrogen and shorten the residence time of ethylene and propylene in the high temperature area, leading to an increase in the yield of gas phase products. The yield of carbon deposition increases rapidly with the increase of temperature, while the increase of nitrogen flow rate could weaken the secondary reaction and reduce the yield of carbon deposition.
  • 加载中
    1. [1]

      ZHONG Li-ke, SUN Zhi-qian, REN Xiang-jun, XU Shan-shan, CHEN A-qiang, WANG Zhen-bo. Research progress of catalytic cracking slurry dehardening method[J]. Petrochem Technol, 2017,46(9):1209-1213. doi: 10.3969/j.issn.1000-8144.2017.09.019

    2. [2]

      XUE Y, GE Z, LI F, SU S, LI B. Modified asphalt properties by blending petroleum asphalt and coal tar pitch[J]. Fuel, 2017,207:64-70. doi: 10.1016/j.fuel.2017.06.064

    3. [3]

      LI Yao-wei. Optimization of catalytic cracking slurry to improve asphalt quality[D]. Shandong: Shandong University of Science and Technology, 2006.

    4. [4]

      SYROEZHKO A M, PROSKURYAKOV V A, BEGAK O Y, FEDOROV V V, KORCHEMKIN S N, SOKOLOVA Y V, KUZNETSOVA O Y. Softeners for rubber and corrosion-resistant coatings based on shale and petroleum raw materials[J]. Russ J Appl Chem, 2001,74(7):1235-1239. doi: 10.1023/A:1013008126894

    5. [5]

      LI P, XIONG J, GE M, SUN J, ZHANG W, SONG Y. Preparation of pitch-based general purpose carbon fibers from catalytic slurry oil[J]. Fuel Process Technol, 2015,140:231-235. doi: 10.1016/j.fuproc.2015.09.011

    6. [6]

      GUNNING , HARRY E. Atomic and free radical reactions[J]. J Am Chem Soc, 1955,77(8):2347-2348.  

    7. [7]

      RANZI E, DENTE M, GOLDANIGA A, BOZZANO G, FARAVELLI T. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures[J]. Prog Energy Combust Sci, 2001,27(1):99-139. doi: 10.1016/S0360-1285(00)00013-7

    8. [8]

      GHASSABZADEH H, DARIAN J T, ZAHERI R. Experimental study and kinetic modeling of kerosene thermal cracking[J]. J Anal Appl Pyrolysis, 2009,86(1):221-232. doi: 10.1016/j.jaap.2009.06.006

    9. [9]

      ZHOU Zhi. Study on influencing factors of naphtha to produce low carbon olefin[J]. Petrochem Technol, 2018,47(4):338-343. doi: 10.3969/j.issn.1000-8144.2018.04.006

    10. [10]

      CORMA A, ORCHILLES A V. Current views on the mechanism of catalytic cracking[J]. Microporous Mesoporous Mater, 2000,35:21-30.  

    11. [11]

      CHEN Jun-wu. Catalytic Cracking Process and Engineering[M]. 2nd ed, Beijing:China Petrochemical Press, 2005.

    12. [12]

      AFSHAREBRAHIMI A, TARIGHI S. The influence of temperature and catalyst additives on catalytic cracking of a heavy fuel oil[J]. Petrol Sci Technol, 2015,33(4):415-421. doi: 10.1080/10916466.2014.987298

    13. [13]

      KHATTAF A, FAHAD S S, A LI, AHMED S. Catalytic cracking of arab super light crude oil to light olefins:An experimental and kinetic study[J]. Energy Fuels, 2018,32(2):2234-2244. doi: 10.1021/acs.energyfuels.7b04045

    14. [14]

      HAGHIGHI S S, RAHIMPOUR M R, RAEISSI S, DEHGHANI O. Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide[J]. Chem Eng J, 2013,228:1158-1167. doi: 10.1016/j.cej.2013.05.048

    15. [15]

      LIAO Shi-jian, ZHANG Ji-ren. Theoretical discussion on the product composition of acetylene produced by partial combustion of methane[J]. J Fuel Chem Technol, 1966,7(1):1-7.  

    16. [16]

      TIAN Li-da. Analysis on the polymerization mechanism of advanced alkyne in natural gas acetylene process[J]. Nat Gas Chem Ind, 2014,39(3):16-20. doi: 10.3969/j.issn.1001-9219.2014.03.004

    17. [17]

      HONG Y. Advances in technology for preparation of acetylene via partial oxidation of natural gas[J]. China Pet Process Pet Technol, 2010,12(2):8-12.  

    18. [18]

      ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating sliding-arc argon plasma cracking methane to produce hydrogen[J]. J Fuel Chem Technol, 2016,44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009 

    19. [19]

      YAN B, CHENG Y, LI T, CHENG Y. Detailed kinetic modeling of acetylene decomposition/soot formation during quenching of coal pyrolysis in thermal plasma[J]. Energy, 2017,121:10-20. doi: 10.1016/j.energy.2016.12.130

    20. [20]

      LAHAYE J, BADIE P, DUCRET J. Mechanism of carbon formation during steamcracking of hydrocarbons[J]. Carbon, 1977,15(2):87-93. doi: 10.1016/0008-6223(77)90022-7

    21. [21]

      HARRIS S J, WEINER A M. Soot particle growth in premixed toluene/ethylene flames[J]. Combust Sci Technol, 1984,38(1/2):75-87.  

    22. [22]

      QU Guo-hua. Delayed Coking Process and Engineering[M]. Beijing:China Petrochemical Press, 2008.

    23. [23]

      WANG Gang, WU Yong-tao, XU Chun-ming, LIU Wei-kang, GAO Jin-sen. Study on catalytic pyrolysis of FCC gasoline to produce low carbon alkenes[J]. J Fuel Chem Technol, 2009,37(5):552-559. doi: 10.3969/j.issn.0253-2409.2009.05.007 

    24. [24]

      CHEN Bin. Ethylene Engineering[M]. Beijing:Chemical Industry Press, 1997.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    9. [9]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    11. [11]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    16. [16]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

Metrics
  • PDF Downloads(6)
  • Abstract views(1133)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return