Citation: QIN Zhi-hong, BU Liang-hui, LI Xiang. Prediction model for coke quality and mechanism based on coking coal composition and structure parameters[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1409-1422. shu

Prediction model for coke quality and mechanism based on coking coal composition and structure parameters

  • Corresponding author: QIN Zhi-hong, qinzh1210@163.com
  • Received Date: 12 September 2018
    Revised Date: 16 October 2018

    Fund Project: the National Natural Science Foundation of China 51674260the Coal Joint Fund from National Natural Science Foundation of China and Shenhua Group Corporation Limited U1361116the National Basic Research Program of China (973 program) 2012CB214900The project was supported by the Coal Joint Fund from National Natural Science Foundation of China and Shenhua Group Corporation Limited (U1361116), the National Natural Science Foundation of China (51674260) and the National Basic Research Program of China (973 program, 2012CB214900)

Figures(10)

  • Five coking coals and 44 groups of blended coals were studied, and the coking experiments with coal cup were completed using a 40 kg small coke oven. According to the yields of heavy component, dense medium component and loose medium component (YHC, YDMC and YLMC) obtained by all-component separation as well as the FT-IR parameters of I3 and I4 which reflect hydrogen bond association, aliphatic chain length and branched degree, the prediction model for coke quality was established with the BP neural network. Then, the characteristics of the model were discussed and the coking mechanism by the new model was analyzed. The results show that using new defined coal structure parameters to predict coke quality has some advantages. The predicted and measured values of coke formation rate (CR), micro-strength (MSI), reactivity of particulate coke (PRI) and post-reaction strength (PSR) are in good agreement, and the fitting correlation coefficient of y versus x reaches 0.986, 0.982, 0.956 and 0.926, respectively. The prediction results of CR, MSI and PRI by the model are good with the mean variation of nine samples being 0.53%, 1.58% and 1.28%, respectively. However, the prediction result of (PSR) is poor with the mean variation being 12.22%. The results can provide a good foundation for the establishment of a new method for coal blending.
  • 加载中
    1. [1]

      XIE Hai-shen, LIU Yong-xin, LÜ Qing, MENG Jun-po. Coke quality prediction models[J]. J Northeast Univ, 2007,28(3):373-377. doi: 10.3321/j.issn:1005-3026.2007.03.018

    2. [2]

      DÍEZ M A, ALVAREZ R, BARRIOCANAL C. Coal for metallurgical coke production:Predictions of coke quality and future requirements for cokemaking[J]. Int J Coal Geol, 2002,50(1/4):389-412.  

    3. [3]

      ZHANG Q, WU X, FENG A, SHI M. Prediction of coke quality at Baosteel[J]. FPT, 2004,86(1):1-11.  

    4. [4]

      ÁLVAREZ R, DÍEZ M A, BARRIOCANAL C, DÍAZ-FAES E, CIMADEVILLA J L G. An approach to blast furnace coke quality prediction[J]. Fuel, 2007,86(14):2159-2166. doi: 10.1016/j.fuel.2006.11.026

    5. [5]

      MORGA R, JELONEK I, KRUSZEWSKA K, SZULIK W. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes[J]. Int J Coal Geol, 2015,144/145:130-137. doi: 10.1016/j.coal.2015.04.006

    6. [6]

      CHEHREH C S, MATIN S S, HOWER J C. Explaining relationships between coke quality index and coal properties by Random Forest method[J]. Fuel, 2016,182:754-760. doi: 10.1016/j.fuel.2016.06.034

    7. [7]

      YU A B, STANDISH N, LU L. Coal agglomeration and its effect on bulk density[J]. Powder Technol, 1995,82(2):177-189. doi: 10.1016/0032-5910(94)02912-8

    8. [8]

      NOMURA S, THOMAS K M. The effect of swelling pressure during coal carbonization on coke porosity[J]. Fuel, 1996,75(2):187-194. doi: 10.1016/0016-2361(95)00238-3

    9. [9]

      ZHANG Qun, WU Xin-ci, FENG An-zu, SHI Mei-ren. Baosteel coke quality prediction model Ⅱ. Establishment and application of coke quality[J]. J Fuel Chem Technol, 2002,30(4):300-305. doi: 10.3969/j.issn.0253-2409.2002.04.003

    10. [10]

      WANG Guang-hui, FAN Cheng, TIAN Wen-zhong, YU Ming-cheng, LIU Zhi-ping, PAN Li-hui, JING Mei-cheng. Method for prediction of coke quality[J]. J Wuhan Univ Sci Technol (Nat Sci Edi), 2007,30(1):37-40. doi: 10.3969/j.issn.1674-3644.2007.01.011

    11. [11]

      LÜ Gui-shuang, ZHENG Mei-rong, ZHAO Hua, CHEN You. The effect study of coking coal qualities on coke thermal property[C]. CSST, 2009.

    12. [12]

      ZHOU Shi-yong. The Applation of Coal Petrology[M]. Beijing:Metall Ind Press, 1985.

    13. [13]

      ZHOU Shi-yong, ZHAO Jun-guo. Beijing:Metall Ind Press, 2005.

    14. [14]

      YANG Jian-gang. The Practical Tutorial of Artificial Neural Network[M]. Hangzhou:Zhejiang University Press, 2001.

    15. [15]

      ZHOU Hong, MIN Li-shu, ZOU Xiang-lin. Reserach on prediction of blended coal for coking in oversized coke furnance based on neural network[J]. J Syst Simul, 2009,21(6):1543-1547.  

    16. [16]

      LIU Jun, ZHANG Xue-dong, LIU Hong, XU Hai-ping. Prediction of coke quality based on BP neural network[J]. Fuel Chem Process, 2006,37(6):12-15. doi: 10.3969/j.issn.1001-3709.2006.06.004

    17. [17]

      JIANG Jing, GONG Chun-hui. A Quality Prediction Model of Coke Based on Neural Networks[J]. J Shenyang Univ Sci Technol, 2013,32(2):25-27. doi: 10.3969/j.issn.1003-1251.2013.02.006

    18. [18]

      QIN Zhi-hong, LI Xing-shun, CHEN Juan, ZHANG Li-ying, HOU Cui-li, GONG Tao. Origin and formation mechanism of coal caking property[J]. J China Univ Min Technol, 2010,39(1):64-69. doi: 10.3969/j.issn.1009-105X.2010.01.013

    19. [19]

      LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. J Fuel Chem Technol, 2016,44(4):385-393. doi: 10.3969/j.issn.0253-2409.2016.04.001 

    20. [20]

      QIN Z, HOU C, CHEN J, ZHANG L, MA J. Group separation of coal components and new ideas of coal utilization as petroleum[J]. Int J Min Technol, 2009,19(5):636-641.  

    21. [21]

      QI X, WANG D, XIN H, QI G. In situ FTIR study of real-time changes of active groups during oxygen-free reaction of coal[J]. Energy Fuels, 2013,27(6):3130-3136. doi: 10.1021/ef400534f

    22. [22]

      SUN Zhang, GUO Rui, LIU Peng-fei, LIANG Ying-hua. Relationship between dynamic reactivity of particulate coke and lump coke reactivity[J]. Coal Convers, 2015,38(3):70-73. doi: 10.3969/j.issn.1004-4248.2015.03.015

    23. [23]

      YANG Jun-he, DU He-gui, QIAN Zhan-fen, CUI Ping. Reactivity of particulate coke[J]. J Northeast Univ, 1999,20(3):64-67.  

    24. [24]

      PRICE J T, KHAN M A, GRANSDEN J F. "Suppercoke" high strength coke from western Canadian coals[C]. 59th Ironmaking Conference Proceedings. Chicago, Illinois, 1999: 227-239.

    25. [25]

      ZHANG Qun, WU Xin-ci, FENG An-zu, SHI Mei-ren. Baosteel coke quality prediction model Ⅰ. Factors affecting thermal properties of coke[J]. J Fuel Chem Technol, 2002,30(2):113-118. doi: 10.3969/j.issn.0253-2409.2002.02.004

    26. [26]

      QIN Z, LI X, SUN H, ZHAO C, RONG L. Caking property and active components of coal based on group component separation[J]. Int J Min Technol, 2016,26(4):571-575. doi: 10.1016/j.ijmst.2016.05.006

    27. [27]

      ZHANG Shuang-quan. Coal Chemistry[M]. Xuzhou:China University of Mining Technology Press, 2009.

    28. [28]

      WENG Shi-fu. Fourier Transform Infrared Spectrometer[M]. Beijing:Chemical Industry Press, 2005.

    29. [29]

      ZHANG Deng-feng. The Application of MATLAB in Design of Neural Networks[M]. Beijing:China Mechine Press, 2009.

    30. [30]

      WANG Xiu-kun, ZHANG Xiao-feng. A new architecture of neural network array replacing of a multiple outputs BP model networks[J]. Comput Sci, 2001,28(10):61-63. doi: 10.3969/j.issn.1002-137X.2001.10.014

    31. [31]

      GUO Yi-nan, WANG Ling, TAN De-jian, HAO Rong. Coal blending control based on mixed optimization of genetic algorithm and neural network[J]. J China Univ Min Technol, 2002,31(5):404-406. doi: 10.3321/j.issn:1000-1964.2002.05.016

    32. [32]

      HU De-sheng, WU Xin-ci, DAI Chao-fa. Coke strength prediction and the quality control of coal blending at Baosteel[J]. Baosteel Technol, 2000(3):30-34.  

    33. [33]

    34. [34]

      VALIA H S. Prediction of coke strength after reaction with CO2 from coal analyses at inland steel company[J]. I and SM, 1989(5):77-87.

    35. [35]

      NOMURA S, NAITO M, YAMAGUCHI K. Post-reaction strength of catalyst-added highly reaction coke[J]. lSIJ Int, 2007,47(6):831-839.  

    36. [36]

      QIN Zhi-hong. Theory on embedded structure model of coal[J]. J China Univ Min Technol, 2017,46(5):939-958.  

  • 加载中
    1. [1]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    2. [2]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    5. [5]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    6. [6]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    7. [7]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    18. [18]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    19. [19]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    20. [20]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

Metrics
  • PDF Downloads(13)
  • Abstract views(1395)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return