Prediction model for coke quality and mechanism based on coking coal composition and structure parameters
- Corresponding author: QIN Zhi-hong, qinzh1210@163.com
Citation:
QIN Zhi-hong, BU Liang-hui, LI Xiang. Prediction model for coke quality and mechanism based on coking coal composition and structure parameters[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(12): 1409-1422.
XIE Hai-shen, LIU Yong-xin, LÜ Qing, MENG Jun-po. Coke quality prediction models[J]. J Northeast Univ, 2007,28(3):373-377. doi: 10.3321/j.issn:1005-3026.2007.03.018
DÍEZ M A, ALVAREZ R, BARRIOCANAL C. Coal for metallurgical coke production:Predictions of coke quality and future requirements for cokemaking[J]. Int J Coal Geol, 2002,50(1/4):389-412.
ZHANG Q, WU X, FENG A, SHI M. Prediction of coke quality at Baosteel[J]. FPT, 2004,86(1):1-11.
ÁLVAREZ R, DÍEZ M A, BARRIOCANAL C, DÍAZ-FAES E, CIMADEVILLA J L G. An approach to blast furnace coke quality prediction[J]. Fuel, 2007,86(14):2159-2166. doi: 10.1016/j.fuel.2006.11.026
MORGA R, JELONEK I, KRUSZEWSKA K, SZULIK W. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes[J]. Int J Coal Geol, 2015,144/145:130-137. doi: 10.1016/j.coal.2015.04.006
CHEHREH C S, MATIN S S, HOWER J C. Explaining relationships between coke quality index and coal properties by Random Forest method[J]. Fuel, 2016,182:754-760. doi: 10.1016/j.fuel.2016.06.034
YU A B, STANDISH N, LU L. Coal agglomeration and its effect on bulk density[J]. Powder Technol, 1995,82(2):177-189. doi: 10.1016/0032-5910(94)02912-8
NOMURA S, THOMAS K M. The effect of swelling pressure during coal carbonization on coke porosity[J]. Fuel, 1996,75(2):187-194. doi: 10.1016/0016-2361(95)00238-3
ZHANG Qun, WU Xin-ci, FENG An-zu, SHI Mei-ren. Baosteel coke quality prediction model Ⅱ. Establishment and application of coke quality[J]. J Fuel Chem Technol, 2002,30(4):300-305. doi: 10.3969/j.issn.0253-2409.2002.04.003
WANG Guang-hui, FAN Cheng, TIAN Wen-zhong, YU Ming-cheng, LIU Zhi-ping, PAN Li-hui, JING Mei-cheng. Method for prediction of coke quality[J]. J Wuhan Univ Sci Technol (Nat Sci Edi), 2007,30(1):37-40. doi: 10.3969/j.issn.1674-3644.2007.01.011
LÜ Gui-shuang, ZHENG Mei-rong, ZHAO Hua, CHEN You. The effect study of coking coal qualities on coke thermal property[C]. CSST, 2009.
ZHOU Shi-yong. The Applation of Coal Petrology[M]. Beijing:Metall Ind Press, 1985.
ZHOU Shi-yong, ZHAO Jun-guo. Beijing:Metall Ind Press, 2005.
YANG Jian-gang. The Practical Tutorial of Artificial Neural Network[M]. Hangzhou:Zhejiang University Press, 2001.
ZHOU Hong, MIN Li-shu, ZOU Xiang-lin. Reserach on prediction of blended coal for coking in oversized coke furnance based on neural network[J]. J Syst Simul, 2009,21(6):1543-1547.
LIU Jun, ZHANG Xue-dong, LIU Hong, XU Hai-ping. Prediction of coke quality based on BP neural network[J]. Fuel Chem Process, 2006,37(6):12-15. doi: 10.3969/j.issn.1001-3709.2006.06.004
JIANG Jing, GONG Chun-hui. A Quality Prediction Model of Coke Based on Neural Networks[J]. J Shenyang Univ Sci Technol, 2013,32(2):25-27. doi: 10.3969/j.issn.1003-1251.2013.02.006
QIN Zhi-hong, LI Xing-shun, CHEN Juan, ZHANG Li-ying, HOU Cui-li, GONG Tao. Origin and formation mechanism of coal caking property[J]. J China Univ Min Technol, 2010,39(1):64-69. doi: 10.3969/j.issn.1009-105X.2010.01.013
LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. J Fuel Chem Technol, 2016,44(4):385-393. doi: 10.3969/j.issn.0253-2409.2016.04.001
QIN Z, HOU C, CHEN J, ZHANG L, MA J. Group separation of coal components and new ideas of coal utilization as petroleum[J]. Int J Min Technol, 2009,19(5):636-641.
QI X, WANG D, XIN H, QI G. In situ FTIR study of real-time changes of active groups during oxygen-free reaction of coal[J]. Energy Fuels, 2013,27(6):3130-3136. doi: 10.1021/ef400534f
SUN Zhang, GUO Rui, LIU Peng-fei, LIANG Ying-hua. Relationship between dynamic reactivity of particulate coke and lump coke reactivity[J]. Coal Convers, 2015,38(3):70-73. doi: 10.3969/j.issn.1004-4248.2015.03.015
YANG Jun-he, DU He-gui, QIAN Zhan-fen, CUI Ping. Reactivity of particulate coke[J]. J Northeast Univ, 1999,20(3):64-67.
PRICE J T, KHAN M A, GRANSDEN J F. "Suppercoke" high strength coke from western Canadian coals[C]. 59th Ironmaking Conference Proceedings. Chicago, Illinois, 1999: 227-239.
ZHANG Qun, WU Xin-ci, FENG An-zu, SHI Mei-ren. Baosteel coke quality prediction model Ⅰ. Factors affecting thermal properties of coke[J]. J Fuel Chem Technol, 2002,30(2):113-118. doi: 10.3969/j.issn.0253-2409.2002.02.004
QIN Z, LI X, SUN H, ZHAO C, RONG L. Caking property and active components of coal based on group component separation[J]. Int J Min Technol, 2016,26(4):571-575. doi: 10.1016/j.ijmst.2016.05.006
ZHANG Shuang-quan. Coal Chemistry[M]. Xuzhou:China University of Mining Technology Press, 2009.
WENG Shi-fu. Fourier Transform Infrared Spectrometer[M]. Beijing:Chemical Industry Press, 2005.
ZHANG Deng-feng. The Application of MATLAB in Design of Neural Networks[M]. Beijing:China Mechine Press, 2009.
WANG Xiu-kun, ZHANG Xiao-feng. A new architecture of neural network array replacing of a multiple outputs BP model networks[J]. Comput Sci, 2001,28(10):61-63. doi: 10.3969/j.issn.1002-137X.2001.10.014
GUO Yi-nan, WANG Ling, TAN De-jian, HAO Rong. Coal blending control based on mixed optimization of genetic algorithm and neural network[J]. J China Univ Min Technol, 2002,31(5):404-406. doi: 10.3321/j.issn:1000-1964.2002.05.016
HU De-sheng, WU Xin-ci, DAI Chao-fa. Coke strength prediction and the quality control of coal blending at Baosteel[J]. Baosteel Technol, 2000(3):30-34.
VALIA H S. Prediction of coke strength after reaction with CO2 from coal analyses at inland steel company[J]. I and SM, 1989(5):77-87.
NOMURA S, NAITO M, YAMAGUCHI K. Post-reaction strength of catalyst-added highly reaction coke[J]. lSIJ Int, 2007,47(6):831-839.
QIN Zhi-hong. Theory on embedded structure model of coal[J]. J China Univ Min Technol, 2017,46(5):939-958.
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
Gang Liu , Heng Zhang , Ying Ma , Shiling Yuan , Qisheng Song , Zhenghu Xu , Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
Yang Liu , Ying Yu , Yilei Wang , Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069