Citation: ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 249-256. shu

Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene

  • Corresponding author: SHEN Bo-xiong, shenboxiong0722@sina.com
  • Received Date: 13 September 2018
    Revised Date: 30 October 2018

    Fund Project: Tangshan Science and Technology Project 18130211Athe National Important Research and Development Plan 2018YFB0605101The project was supported by the National Important Research and Development Plan (2018YFB0605101), Key Project Natural Science Foundation of Tianjin (18JCZDJC39800), the Project of Science and Technology of Tianjin (18ZXSZSF00040), Tianjin Science Popularization Project(18KPXMSF00080) and Tangshan Science and Technology Project(18130211A)Tianjin Science Popularization Project 18KPXMSF00080the Project of Science and Technology of Tianjin 18ZXSZSF00040Key Project Natural Science Foundation of Tianjin 18JCZDJC39800

Figures(12)

  • The CuO-Ti3+/TiO2(Cu-TiMB) pholocatalyst was prepared by reducing TiO2 loaded with Cu-BTC (BTC, 1, 3, 5-benzoic acid) precursor; its photocatalytic performance in the removal of gaseous toluene was investigated. The result indicated that the toluene removal efficiency of CuO-Ti3+/TiO2(Cu-TiMB) by visible irradiation was 2.68 time higher than that of CuO-TiO2(Cu-TiD) prepared by impregnation. The CuO-Ti3+/TiO2(Cu-TiMB) catalyst shows relatively high surface area (147 m2/g), small particle size (0.45 μm), porous structure and high CuO dispersion; Ti3+ may provide a large number of oxygen vacancies, which can significantly enhance the photocatalytic response at 400-800 nm. In addition, Cu2+ and Cu+ may form heterogeneous structure with Ti3+, which can further increase the number of oxygen vacancies and delay the electron-hole pairs (e--h+) recombination time. The oxygen vacancies are effective in enhancing the ability for capturing adsorption oxygen, promoting the chemisorption ability by changing the valence state of metal oxides, and then improving the photocatalytic performance.
  • 加载中
    1. [1]

      YANG C, QIAN H, LI X, CHENG Y, HE H, ZENG G, XI J. Simultaneous removal of multicomponent VOCs in Biofilters[J]. Trends Biotechnol, 2018,36(7):673-685.  

    2. [2]

      GREGIS G, SCHAEFER S, SANCHEZ J B, FIERRO V, BERGER F, BEZVERKHYY I, WEBER G, BELLAT J P, CELZARD A. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis[J]. Mater Chem Phys, 2017,192:374-382.

    3. [3]

      MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B, MALANKOWSKA A, ZALESKA-MEDYNSKA A, NADOLNA J. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Appl Catal B:Environ, 2018,233:301-317.  

    4. [4]

      TAN H, ZHAO Z, NIU M, MAO C, CAO D, CHENG D, FENG P, SUN Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014,6(17):10216-10223.  

    5. [5]

      HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable Sustainable Energy Rev, 2018,91:793-801. doi: 10.1016/j.rser.2018.04.103

    6. [6]

      LIU H, ZHANG S, LIU Y, YANG Z, FENG X, LU X, HUO F. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis[J]. Small, 2015,11(26):3130-3134.  

    7. [7]

      HAIDER A J, AL ANBARI R H, KADHIM G R, SALAME C T. Exploring potential Environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017,119:332-345.  

    8. [8]

      LI Yuan-yang, YAN Liang-hong, JIANG Bo. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chin J Inorg Chem, 2018,34(9):91701-91709.  

    9. [9]

      RAZALI M H, YUSOFF M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion[J]. Mater Lett, 2018,221:168-171.  

    10. [10]

      KAUR R, KAUR A, UMAR A, ANDERSON W A, KANSAL S K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC:Synthesis, properties and enhanced absorption properties[J]. Mater Res Bull, 2019,109:124-133.  

    11. [11]

      CHAUDHARY R, JUNEJA H, PAGADALA R, GANDHARE N, GHARPURE M. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG-DTG and DTA techniques[J]. J Saudi Chem Soc, 2015,19(4):442-453.  

    12. [12]

      COLÓN G, MAICU M, HIDALGO M C, NAVÍO J A. Cu-doped TiO2 systems with improved photocatalytic activity[J]. Appl Catal B:Environ, 2006,67(1/2):41-51.  

    13. [13]

      ZHU Peng-fei, LIU Mei, NIU Di, WANG Si. Characterization and property of Cu-Fe-TiO2/bentonite composite photocatalyst[J]. Chin J Spectr Lab, 2013,30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056

    14. [14]

      MARX S, KLEIST W, BAIKER A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J Catal, 2011,281(1):76-87.  

    15. [15]

      LIU S, YUAN S, ZHANG Q, XU B, WANG C, HANG M, OHNO T. Fabrication and characterization of black TiO2 with different Ti3+ concentrations under atmospheric conditions[J]. J Catal, 2018,366:282-288. doi: 10.1016/j.jcat.2018.07.018

    16. [16]

      POZAN G S, ISLEYEN M, GOKCEN S. Transition metal coated TiO2 nanoparticles:Synthesis, characterization and their photocatalytic activity[J]. Appl Catal B:Environ, 2013,140-141:537-545.  

    17. [17]

      WANG B, SUN Q, LIU S, LI Y. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting[J]. Int J Hydrogen Energy, 2013,38(18):7232-7240.

    18. [18]

      WANG X, LI Y, LIU X, GAO S, HUANG B, DAI Y. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chin J Catal, 2015,36(3):389-399.  

    19. [19]

      BAI Y S, CHEN S, LU L D, BAO J C. Study of degradation of photocatalytic methyl orange on nano study of degradation of photocatalytic methyl orange on nano NdxCo2-xZr2O7[J]. Adv Mater Res, 2012,602-604:169-173.

    20. [20]

      PENG B, FENG C, LIU S, ZHANG R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today, 2018,314:122-128.  

    21. [21]

      YU X, FAN X, AN L, LI Z, LIU J. Facile synthesis of Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis[J]. J Phys Chem Solids, 2018,119:94-99. doi: 10.1016/j.jpcs.2018.03.024

    22. [22]

      LEE J, LI Z, ZHU L, XIE S, CUI X. Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalytic activities[J]. Appl Catal B:Environl, 2018,224:715-724. doi: 10.1016/j.apcatb.2017.10.057

    23. [23]

      YIN H, ZHU J, CHEN J, GONG J, NIE Q. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. Mater Lett, 2018,221:267-270.  

    24. [24]

      ZENG Y, WANG T, ZHANG S, WANG Y, ZHONG Q. Sol-gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO[J]. Appl Surf Sci, 2017,411:227-234.  

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(4)
  • Abstract views(733)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return