Citation: ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 249-256. shu

Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene

  • Corresponding author: SHEN Bo-xiong, shenboxiong0722@sina.com
  • Received Date: 13 September 2018
    Revised Date: 30 October 2018

    Fund Project: Tangshan Science and Technology Project 18130211Athe National Important Research and Development Plan 2018YFB0605101The project was supported by the National Important Research and Development Plan (2018YFB0605101), Key Project Natural Science Foundation of Tianjin (18JCZDJC39800), the Project of Science and Technology of Tianjin (18ZXSZSF00040), Tianjin Science Popularization Project(18KPXMSF00080) and Tangshan Science and Technology Project(18130211A)Tianjin Science Popularization Project 18KPXMSF00080the Project of Science and Technology of Tianjin 18ZXSZSF00040Key Project Natural Science Foundation of Tianjin 18JCZDJC39800

Figures(12)

  • The CuO-Ti3+/TiO2(Cu-TiMB) pholocatalyst was prepared by reducing TiO2 loaded with Cu-BTC (BTC, 1, 3, 5-benzoic acid) precursor; its photocatalytic performance in the removal of gaseous toluene was investigated. The result indicated that the toluene removal efficiency of CuO-Ti3+/TiO2(Cu-TiMB) by visible irradiation was 2.68 time higher than that of CuO-TiO2(Cu-TiD) prepared by impregnation. The CuO-Ti3+/TiO2(Cu-TiMB) catalyst shows relatively high surface area (147 m2/g), small particle size (0.45 μm), porous structure and high CuO dispersion; Ti3+ may provide a large number of oxygen vacancies, which can significantly enhance the photocatalytic response at 400-800 nm. In addition, Cu2+ and Cu+ may form heterogeneous structure with Ti3+, which can further increase the number of oxygen vacancies and delay the electron-hole pairs (e--h+) recombination time. The oxygen vacancies are effective in enhancing the ability for capturing adsorption oxygen, promoting the chemisorption ability by changing the valence state of metal oxides, and then improving the photocatalytic performance.
  • 加载中
    1. [1]

      YANG C, QIAN H, LI X, CHENG Y, HE H, ZENG G, XI J. Simultaneous removal of multicomponent VOCs in Biofilters[J]. Trends Biotechnol, 2018,36(7):673-685.  

    2. [2]

      GREGIS G, SCHAEFER S, SANCHEZ J B, FIERRO V, BERGER F, BEZVERKHYY I, WEBER G, BELLAT J P, CELZARD A. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis[J]. Mater Chem Phys, 2017,192:374-382.

    3. [3]

      MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B, MALANKOWSKA A, ZALESKA-MEDYNSKA A, NADOLNA J. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Appl Catal B:Environ, 2018,233:301-317.  

    4. [4]

      TAN H, ZHAO Z, NIU M, MAO C, CAO D, CHENG D, FENG P, SUN Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014,6(17):10216-10223.  

    5. [5]

      HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable Sustainable Energy Rev, 2018,91:793-801. doi: 10.1016/j.rser.2018.04.103

    6. [6]

      LIU H, ZHANG S, LIU Y, YANG Z, FENG X, LU X, HUO F. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis[J]. Small, 2015,11(26):3130-3134.  

    7. [7]

      HAIDER A J, AL ANBARI R H, KADHIM G R, SALAME C T. Exploring potential Environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017,119:332-345.  

    8. [8]

      LI Yuan-yang, YAN Liang-hong, JIANG Bo. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chin J Inorg Chem, 2018,34(9):91701-91709.  

    9. [9]

      RAZALI M H, YUSOFF M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion[J]. Mater Lett, 2018,221:168-171.  

    10. [10]

      KAUR R, KAUR A, UMAR A, ANDERSON W A, KANSAL S K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC:Synthesis, properties and enhanced absorption properties[J]. Mater Res Bull, 2019,109:124-133.  

    11. [11]

      CHAUDHARY R, JUNEJA H, PAGADALA R, GANDHARE N, GHARPURE M. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG-DTG and DTA techniques[J]. J Saudi Chem Soc, 2015,19(4):442-453.  

    12. [12]

      COLÓN G, MAICU M, HIDALGO M C, NAVÍO J A. Cu-doped TiO2 systems with improved photocatalytic activity[J]. Appl Catal B:Environ, 2006,67(1/2):41-51.  

    13. [13]

      ZHU Peng-fei, LIU Mei, NIU Di, WANG Si. Characterization and property of Cu-Fe-TiO2/bentonite composite photocatalyst[J]. Chin J Spectr Lab, 2013,30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056

    14. [14]

      MARX S, KLEIST W, BAIKER A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J Catal, 2011,281(1):76-87.  

    15. [15]

      LIU S, YUAN S, ZHANG Q, XU B, WANG C, HANG M, OHNO T. Fabrication and characterization of black TiO2 with different Ti3+ concentrations under atmospheric conditions[J]. J Catal, 2018,366:282-288. doi: 10.1016/j.jcat.2018.07.018

    16. [16]

      POZAN G S, ISLEYEN M, GOKCEN S. Transition metal coated TiO2 nanoparticles:Synthesis, characterization and their photocatalytic activity[J]. Appl Catal B:Environ, 2013,140-141:537-545.  

    17. [17]

      WANG B, SUN Q, LIU S, LI Y. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting[J]. Int J Hydrogen Energy, 2013,38(18):7232-7240.

    18. [18]

      WANG X, LI Y, LIU X, GAO S, HUANG B, DAI Y. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chin J Catal, 2015,36(3):389-399.  

    19. [19]

      BAI Y S, CHEN S, LU L D, BAO J C. Study of degradation of photocatalytic methyl orange on nano study of degradation of photocatalytic methyl orange on nano NdxCo2-xZr2O7[J]. Adv Mater Res, 2012,602-604:169-173.

    20. [20]

      PENG B, FENG C, LIU S, ZHANG R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today, 2018,314:122-128.  

    21. [21]

      YU X, FAN X, AN L, LI Z, LIU J. Facile synthesis of Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis[J]. J Phys Chem Solids, 2018,119:94-99. doi: 10.1016/j.jpcs.2018.03.024

    22. [22]

      LEE J, LI Z, ZHU L, XIE S, CUI X. Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalytic activities[J]. Appl Catal B:Environl, 2018,224:715-724. doi: 10.1016/j.apcatb.2017.10.057

    23. [23]

      YIN H, ZHU J, CHEN J, GONG J, NIE Q. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. Mater Lett, 2018,221:267-270.  

    24. [24]

      ZENG Y, WANG T, ZHANG S, WANG Y, ZHONG Q. Sol-gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO[J]. Appl Surf Sci, 2017,411:227-234.  

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    20. [20]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(4)
  • Abstract views(777)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return