Citation: ZHAI Jian-rong, ZHANG Yan-min, MO Wen-long, LI Xian, ZHONG Mei, MA Feng-yun. Effect of preparation method on the structure and properties of coal tar model compound cracking catalyst Ni/Al2O3[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1063-1073. shu

Effect of preparation method on the structure and properties of coal tar model compound cracking catalyst Ni/Al2O3

  • Corresponding author: ZHONG Mei, zhongmei0504@126.com MA Feng-yun, ma_fy@126.com
  • Received Date: 5 March 2018
    Revised Date: 3 July 2018

    Fund Project: National Natural Science Foundation of China 21606187Youth Science and technology innovation personnel training project in Xinjiang Uygur Autonomous Region QN2016BS0152The project was supported by the Key Laboratory of Xinjiang Uygur Autonomous Region (2016D03009), National Natural Science Foundation of China (21606187), National Key Research and Development Program (2016YFF0102602) and Youth Science and technology innovation personnel training project in Xinjiang Uygur Autonomous Region (QN2016BS0152)National Key Research and Development Program 2016YFF0102602the Key Laboratory of Xinjiang Uygur Autonomous Region 2016D03009

Figures(12)

  • Cat-1, Cat-2, Cat-3 and Cat-4 catalysts were synthesized via different preparation methods that are incipient wetness, impregnation-precipitation and mechanochemical method (carriers from market and homemade for comparison), and then characterized by BET, H2-TPR, XRD, XPS and NH3-TPD. The cracking behavior of toluene and pyrene (3%, mass fraction) (coal tar model compounds) were investigated to evaluate the catalytic performance of the stated catalysts. The catalyst characterization showed that the pore size of all the catalysts belonged to mesoporous range, and Cat-4 catalyst exhibited higher ordered mesoporous and larger surface area than others, up to 235 m2/g. Besides, the peak area of NiAl2O4 spinel reached up to the highest value of 85.2%. The dispersion of Ni in the reduced Cat-4 was the highest and its particle size was the lowest value, about 10.0 nm. Which means that there are more active sites. The catalytic performance results showed that the cracking rate of pyrene varied little for other catalysts, except for Cat-1, but the lowest carbon deposition of 10.84% was obtained under the action of Cat-4, while the carbon deposition of Cat-1, Cat-2 and Cat-3 increased by 35.0%, 74.7% and 45.7% respectively compared with that of Cat-4. Thus, Cat-4 prepared by mechanochemical method is more suitable for the cracking of toluene and pyrene system because of highest BET surface area, which is favorable for the dispersion of active component, and at the same time, the highest content of NiAl2O4 can inhibit the formation of carbon.
  • 加载中
    1. [1]

      KAN T, WANG H Y, HE H X, LI C S, ZHANG S J. Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel, 2011,90(11):3404-3409. doi: 10.1016/j.fuel.2011.06.012

    2. [2]

      GAO Jin-sheng. The Coal Pyrolysis, Coke and Coal Tar Processing[M]. Beijing:Chemical Industry Press, 2010.

    3. [3]

      WANG Xiang-hui, MEN Zhuo-wu, XU Ming, WENG Li, LIU Ke. Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technol, 2014,20(6):36-41.  

    4. [4]

      HOU Bin, LÜ Zi-an, LI Xiao-hui, LI Ding-kai. Catalytic cracking of tar derived from biomass pyrolysis[J]. J Fuel Chem Technol, 2001,29(1):70-75. doi: 10.3969/j.issn.0253-2409.2001.01.014

    5. [5]

      YANG Xiu-chun, Wei Ya-nan, LI Wei-jie. Research progress of catalysts for tar cracking[J]. Chem Ind Eng Progress, 2007,26(3):326-330. doi: 10.3321/j.issn:1000-6613.2007.03.006

    6. [6]

      YU Chang-lin, HU Jiu-biao, YANG Kai, ZHOU Xiao-chun. Effects of preparation methods on the catalytic performance of Ni/CeO2-Al2O3 catalyst in methane partial oxidation[J]. J Fuel Chem Technol, 2013,41(6):722-728. doi: 10.3969/j.issn.0253-2409.2013.06.013 

    7. [7]

      XU Jun-ke, REN Ke-wei, ZHOU Wei, WANG Xiao-lei, LI Zhao-jing, PAN Xiang-min, MA Jian-xin. Influence of preparation method on the properties and catalytic performance of Ni/La2O3/Al2O3 catalyst for dry reforming of methane[J]. J Fuel Chem Technol, 2009,37(4):473-479. doi: 10.3969/j.issn.0253-2409.2009.04.017

    8. [8]

      LUO Lai-tao, HUANG Hong-gang. Study on preparation and surface behavior of nickel sepiolite catalyst[J]. Ind Catal, 2000,8(3):60-64. doi: 10.3969/j.issn.1008-1143.2000.03.012

    9. [9]

      CHAI Yong-ming, XIANG Chun-e, KONG Hui-qing, LIU Yun-qi, LIU Chen-guang. A study on slurry-bed hydrotreating process of distillate oil:ⅠCatalyst preparation[J]. J Fuel Chem Technol, 2008,36(6):720-725. doi: 10.3969/j.issn.0253-2409.2008.06.014

    10. [10]

      WANG Guang-jian, BING Lian-cheng, GUO Na-na, YANG Zhi-jian, ZHANG Jian-kang. Preparation of activated carbon-supported Co-Mo bimetallic catalyst by impregnation-precipitation method[J]. J Fuel Chem Technol, 2012,40(10):1252-1257. doi: 10.3969/j.issn.0253-2409.2012.10.015 

    11. [11]

      AMIN M N, LI Y, RAZZAQ R, LU X M, LI C S, ZHANG S J. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. J Anal Appl Pyrolysis, 2016,118(MAR):54-62.  

    12. [12]

      HAN J Z, LIU X X, YUE J R, XI B F, GAO S Q, XU G W. Catalytic upgrading of in situ coal pyrolysis tar over Ni-Char catalyst with different additives[J]. Energy Fuels, 2014,28(8):4934-4941. doi: 10.1021/ef500927d

    13. [13]

      HU F X, YANG G H, DING G Z, LI Z, DU K S, HU Z F, TIAN S R. Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter[J]. Appl Energy, 2016,170:47-57. doi: 10.1016/j.apenergy.2016.02.080

    14. [14]

      ZOU Meng, MA Feng-yun, MO Wen-long, KONG Ling-tao, LIU Jing-mei, ZHONG Mei, XIAO Yan. Mechanochemical prepared Ni/Al2O3 catalysts and their catalytic performance for methanation[J]. Appl Chem Ind, 2017,46(12):2314-2319. doi: 10.3969/j.issn.1671-3206.2017.12.008

    15. [15]

      ZHANG Yan-min, ZOU Da, ZHAO Yuan, ZHONG Mei, MA Feng-yun. Effect of bimetallic catalysts on cracking behavior of coal tar model compounds[J]. CIESC J, 2017,68(10):3805-3815.  

    16. [16]

      CAO T T, SONG Z G, WANG S B, CAO X X, LI Y, XIA J. Characterizing the pore structure in the silurian and permian shales of the sichuan basin, China[J]. Mar Petrol Geol, 2015,61:140-150. doi: 10.1016/j.marpetgeo.2014.12.007

    17. [17]

      YANG Hua-ming, OUYANG Jin, ZHANG Ke, SHI Rong-rong, ZHANG Xiang-chao. Research progress of mechano-chemical preparation of nanomaterials[J]. Chem Ind Eng Progress, 2005,24(3):239-244. doi: 10.3321/j.issn:1000-6613.2005.03.004

    18. [18]

      YANG Sheng-pin, SHI Yu-xiang. Research of metal powder preparation by high energy ball milling[J]. Welding Technol, 2002,31(3):43-44. doi: 10.3969/j.issn.1002-025X.2002.03.021

    19. [19]

      GROEN J C, PEFFER L A A, PEREZ-RAMIREZ J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous Mesoporous Mater, 2003,60(1/3):1-17.  

    20. [20]

      SING K S W. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619. doi: 10.1351/pac198557040603

    21. [21]

      ZHANG J, XU H Y, JIN X L, GE Q J, LI W Z. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3catalysts for NH3 decomposition[J]. Appl Catal A:Gen, 2005,290(1/2):87-96.  

    22. [22]

      BOUKHA Z, JIMENEZ-GONZALEZ C, RIVAS B D, GONZALEZ-VELASCO J R, GUTIERREZ-ORTIZ J I, LOPEZ-FONSECA R. Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions[J]. Appl Catal B:Environ, 2014,158(1):190-201.  

    23. [23]

      HU D C, GAO J J, PING Y, JIA L H, GUNAWAN P, ZHONG Z Y, XU G W, GU F N, SU F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind Eng Chem Res, 2012,51(13):4875-4886. doi: 10.1021/ie300049f

    24. [24]

      SUN N N, WEN X, WANG F, PENG W C, XIAO F K, WEI W, SUN Y H. Influence of Ni content on catalytic performance of Ni-CaOZrO2 catalysts in CH4-CO2 reforming[J]. Fine Chem, 2010,27(10):1004-1008.

    25. [25]

      MO, MA, LIU, LIU, ZHONG, AISHA·nulahong. Preparation of Ni-Al2O3 catalysts by solution combustion method for CO2 reforming of CH4[J]. J Inorg Mater, 2016,31(5):485-491.  

    26. [26]

      ZHANG J F, BAI Y X, ZHANG Q D, WANG X X, ZHANG T, TIAN Y S, HAN Y Z. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014,132(15):211-218.

    27. [27]

      CZEKAJ I, LOVIAT F, RAIMONDI F, WAMBACH J, BIOLLAZ S, WOKAUN A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas:X-ray photoelectron spectroscopy (XPS)[J]. Appl Catal A:Gen, 2007,329(10):68-78.  

    28. [28]

      SALLEH N F M, JALIL A A, TRIWAHYONO S, EFENDI J, MUKTI R R, HAMEED B H. New insight into electrochemical-induced synthesis of NiAl2O4/Al2O3:Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd(Ⅱ)[J]. Appl Surf Sci, 2015,349(15):485-495.

    29. [29]

      HERACLEOUS E, LEE A F, WILSON K, LEMONIDOU A A. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene:Structural characterization and reactivity studies[J]. J Catal, 2005,231(1):159-171. doi: 10.1016/j.jcat.2005.01.015

    30. [30]

      GONG Li-qian, CHEN Ji-xiang, QIU Ye-jun, ZHANG Ji-yan. Effects of calcinations temperature on structure and catalytic performance of Ni/MgO-Al2O3 catalysts for partial oxidation of methane[J]. J Fuel Chem Technol, 2005,33(2):224-228. doi: 10.3969/j.issn.0253-2409.2005.02.019

    31. [31]

      CHEN Y G, REN J. Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3, interactions[J]. Catal Lett, 1994,29(1/2):39-48.

    32. [32]

      BHATTACHARYYA A, CHANG V W. CO2 reforming of methane to syngas:Deactivation behavior of nickel aluminate spinel catalysts[J]. Stud Surface Sci Catal, 1994,88:207-213. doi: 10.1016/S0167-2991(08)62742-1

    33. [33]

      MO W L, MA F Y, LIU Y E, LIU J M, ZHONG M, AISHA·N L H. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy, 2015,40(46):16147-16158. doi: 10.1016/j.ijhydene.2015.09.149

    34. [34]

      GUO J J, LOU H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007,45(6):1314-1321. doi: 10.1016/j.carbon.2007.01.011

    35. [35]

      XU J K, ZHOU W, WANG J H, LI Z J, MA J X. Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 Catalysts[J]. Chin J Catal, 2009,30(11):1076-1084. doi: 10.1016/S1872-2067(08)60139-4

    36. [36]

      FRUSTERI F, SPADARO L, ARENA F, CHUVILIN A. TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane[J]. Carbon, 2002,40(7):1063-1070. doi: 10.1016/S0008-6223(01)00243-3

    37. [37]

      ZHANG Zhao-bin, YU Chang-chun, SHEN Shi-kong. Partial oxidation of CH4 to syngas on La2O3-promoted Ni/MgAl2O4[J]. Chin J Catal, 2000,21(1):14-18. doi: 10.3321/j.issn:0253-9837.2000.01.006

    38. [38]

      YANG Fan, ZHOU Zhi-jie, WANG Fu-chen, LIU Hai-feng, GONG Xin, YU Zun-hong. Coal char gasification with steam and H2:I The gasification reaction characteristics[J]. J Fuel Chem Technol, 2009,37(1):36-41. doi: 10.3969/j.issn.0253-2409.2009.01.007

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(5)
  • Abstract views(913)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return