Citation: WANG Bao-wen, WANG Wei, LI He-yu, CAI Zhong-yuan, JIANG Tao, LIANG Yan-chen, DING Ning. Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 908-919. shu

Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion

  • Corresponding author: WANG Bao-wen, david-wn@163.com
  • Received Date: 21 May 2020
    Revised Date: 19 July 2020

    Fund Project: the Key Scientific and Technological Project of Henan Province 162102210233National Natural Science Foundation of China 51776073The project was supported by National Natural Science Foundation of China (51776073, 51276210), the Key Scientific and Technological Project of Henan Province (162102210233), Research Project of Ji-Yan Energy Science and Technology Research Institute (2020-05) and Innovative Technology Project of North China University of Water Resources and Electric Power (2019XA014)Research Project of Ji-Yan Energy Science and Technology Research Institute 2020-05National Natural Science Foundation of China 51276210Innovative Technology Project of North China University of Water Resources and Electric Power 2019XA014

Figures(13)

  • Flue gas desulphurized slag was collected as the raw material and purified using the multiple steps of sour purification procedures, which was further prepared as CaSO4 oxygen carrier (OC). Reaction characteristics of the purified desulphurized slag OC with the selected lignite as well as release of the different gaseous sulfur species from the CaSO4 side reactions were investigated on in a lab-scale fixed bed reactor. Several main influencing factors, including reaction temperature, OC excess number Φ and the cycle numbers, were focused. The experimental results indicated that the purified CaSO4 OC was of high reactivity and promising to be applied in the coal-fueled chemical looping combustion process as OC. Furthermore, according to the pros and cons of the three influencing factors on the carbon conversion versus the gaseous sulfur release, the optimized reaction conditions were determined as 900℃ and the OC excess number around 1.0. Finally, under this optimized reaction condition, the effect of the cycle numbers was evaluated and found that the continuous release of gaseous sulfur from the CaSO4 side reactions deteriorated the reactivity of the purified CaSO4 OC and its reaction stability was diminished with the five cycles.
  • 加载中
    1. [1]

      WANG Zhi-xuan, PAN Li, YANG Fan. Comprehensive Utilization of Desulfurized Slag Resources in Thermal Power Plants[M]. Beijing:Chemical Industry Press, 2017.

    2. [2]

      LU Jing-zhao. Study on the preparation of high quality dihydrate gypsum and hemihydrate gypsum whiskers from desulfurized gypsum[D]. Tianjing: Hebei University of Technology, 2016. 

    3. [3]

      ZHENG Ying, WANG Bao-wen, SONG Kan, ZHENG Chu-guang. Study on the characteristics of a new type of oxygen carrier CaSO4 in chemical looping combustion technology[J]. J Eng Thermophys, 2006,27(3):531-533.  

    4. [4]

      SHEN L, ZHENG M, XIAO J, XIAO R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combust Flame, 2008,154(3):489-506. doi: 10.1016/j.combustflame.2008.04.017

    5. [5]

      ZHENG M, ZHONG S, LI K, WANG H, LIU H, WEI Y, ZHU X. Characteristics of CaS-CaO oxidation for chemical looping combustion with CaSO4-based oxygen carrier[J]. Energy Fuels, 2017,31(12):13842-13851. doi: 10.1021/acs.energyfuels.7b01771

    6. [6]

      ZHANG S, XIAO R, YANG Y, CHEN L. CO2 capture and desulfurization in chemical looping combustion of coal with a CaSO4 oxygen carrier[J]. Chem Eng Technol, 2013,36(9):1-10.  

    7. [7]

      ZHANG Xiu-ying, ZHANG Jie, HUO Si-lei, LEI Zhen-lu. Experimental study on the preparation of calcium sulfate whisker by desulfurization gypsum[J]. Chem Miner Process, 2017,46(7):10-12.  

    8. [8]

      DING Ning. Experimental study and mechanism analysis of chemical looping combustion of calcium based oxygen carriers[D]. Wuhan: Huazhong University of Science and Technology, 2013. 

    9. [9]

      WANG Lu-lu, FENG Xuan, SHEN Lai-hong. High sulfur petroleum coke combustion characteristics of chemical looping and sulfur conversion[J]. J Southeast Univ, 2019,42(9):85-92.  

    10. [10]

      LI F, ZENG L, LUIS G, VELAZQUEZ-VARGAS L G, YOSCOVITS Z, FAN L. Syngas chemical looping gasification process:Bench-scale studies and reactor simulations[J]. AIChE, 2010,56(8):2186-2199. doi: 10.1002/aic.12093

    11. [11]

      DING N, ZHANG C, LUO C, ZHENG Y, LIU Z. Effect of hematite addition to CaSO4 oxygen carrier in chemical looping combustion of coal char[J]. RSC Adv, 2015,5(69):56362-56376. doi: 10.1039/C5RA06887H

    12. [12]

      CUI Xiao-jing, MA Li-Ping, YANG Jie, WANG Dong-dong, ZHENG Da-long, YANG Jing, WANG Li-cun. Effect of Fe2O3, SiO2, Al2O3 on chemical looping combustion of phosphogypsum[J]. Bull Chin Ceramic Soc, 2018,37(5):1589-1594.  

    13. [13]

      WABG B, LI J, DING N, MEI D, ZHAO H, ZHENG C. Chemical looping combustion of a typical lignite with CaSO4-CuO mixed oxygen carrier[J]. Energy Fuels, 2017,31(12):13942-13954. doi: 10.1021/acs.energyfuels.7b02584

    14. [14]

      HAN Jian. Experimental study on chemical looping combustion of gas fuel based on calcium based oxygen carrier[D]. Wuhan: Huazhong University of Science and Technology, 2014.

    15. [15]

      LIU Yong-qiang, WANG Zhi-qiang, WU Jin-hu, WU Jing-li, XU Mei. Study on chemical looping combustion characteristics of copper based oxygen carriers and combustible solid waste[J]. J Fuel Chem Technol, 2013,41(9):1056-1063.  

    16. [16]

      GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, ZHENG Min, WU Jia-hua. Study on the reactivity of Fe2O3 oxygen carrier in coal chemical looping combustion[J]. J Fuel Chem Technol, 2009,37(5):513-520.  

    17. [17]

      WANG B, YAN R, ZHENG Y, ZHAO H, ZHENG C. Mechanistic investigation of chemical looping combustion of coal with Fe2O3 oxygen carrier[J]. Fuel, 2011,90(7):2359-2366. doi: 10.1016/j.fuel.2011.03.009

    18. [18]

      YANG J, MA L, YANG J, GUO Z, LIU H, ZHANG W. Chemical looping gasification of phosphogypsum as an oxygen carrier:The Ca and S migration mechanism using the DFT method[J]. Sci Total Environ, 2019,689(7):854-864.  

    19. [19]

      WANG B, YAN R, ZHENG Y, ZHAO H, ZHENG C. Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier[J]. J Fuel Chem Technol, 2011,39(4):251-257. doi: 10.1016/S1872-5813(11)60019-4

    20. [20]

      ZOU Xi-xian, ZHAO Hai-bo, ZHENG Chu-guang. Technical and economic evaluation of chemical looping coal fired serial fluidized bed power station[J]. Proc CSEE, 2014,34(35):6286-6295.  

    21. [21]

      ZHENG M, SHEN L, FENG X. In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore[J]. Energy Convers Manage, 2014,83(7):270-283.  

    22. [22]

      SONG T, ZHENG M, SHEN L, ZHANG T, XIAO J. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal[J]. Ind Eng Chem Res, 2013,52(11):4059-4071. doi: 10.1021/ie400070e

    23. [23]

      JIA Wei-hua, HU Xiu-de, LIU Yong-zhuo, YANG Ming-ming, GUO Qing-jie. Chemical looping combustion characteristics of Ca-Fe/bentonite oxygen carriers and coal[J]. J Fuel Chem Technol, 2014,42(9):1060-1067.  

    24. [24]

      BAI Xue-feng, YIN Xue-feng, DENG Yu-jie, LU Meng. PAHs formation in direct chemical looping combustion of CaSO4/Bentonite oxygen carrier coal[J]. J China Coal Soc, 2017,42(7):1854-1862.  

  • 加载中
    1. [1]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    2. [2]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    12. [12]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    13. [13]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    18. [18]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    19. [19]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(3)
  • Abstract views(1460)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return