Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion
- Corresponding author: WANG Bao-wen, david-wn@163.com
Citation:
WANG Bao-wen, WANG Wei, LI He-yu, CAI Zhong-yuan, JIANG Tao, LIANG Yan-chen, DING Ning. Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(8): 908-919.
WANG Zhi-xuan, PAN Li, YANG Fan. Comprehensive Utilization of Desulfurized Slag Resources in Thermal Power Plants[M]. Beijing:Chemical Industry Press, 2017.
LU Jing-zhao. Study on the preparation of high quality dihydrate gypsum and hemihydrate gypsum whiskers from desulfurized gypsum[D]. Tianjing: Hebei University of Technology, 2016.
ZHENG Ying, WANG Bao-wen, SONG Kan, ZHENG Chu-guang. Study on the characteristics of a new type of oxygen carrier CaSO4 in chemical looping combustion technology[J]. J Eng Thermophys, 2006,27(3):531-533.
SHEN L, ZHENG M, XIAO J, XIAO R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combust Flame, 2008,154(3):489-506. doi: 10.1016/j.combustflame.2008.04.017
ZHENG M, ZHONG S, LI K, WANG H, LIU H, WEI Y, ZHU X. Characteristics of CaS-CaO oxidation for chemical looping combustion with CaSO4-based oxygen carrier[J]. Energy Fuels, 2017,31(12):13842-13851. doi: 10.1021/acs.energyfuels.7b01771
ZHANG S, XIAO R, YANG Y, CHEN L. CO2 capture and desulfurization in chemical looping combustion of coal with a CaSO4 oxygen carrier[J]. Chem Eng Technol, 2013,36(9):1-10.
ZHANG Xiu-ying, ZHANG Jie, HUO Si-lei, LEI Zhen-lu. Experimental study on the preparation of calcium sulfate whisker by desulfurization gypsum[J]. Chem Miner Process, 2017,46(7):10-12.
DING Ning. Experimental study and mechanism analysis of chemical looping combustion of calcium based oxygen carriers[D]. Wuhan: Huazhong University of Science and Technology, 2013.
WANG Lu-lu, FENG Xuan, SHEN Lai-hong. High sulfur petroleum coke combustion characteristics of chemical looping and sulfur conversion[J]. J Southeast Univ, 2019,42(9):85-92.
LI F, ZENG L, LUIS G, VELAZQUEZ-VARGAS L G, YOSCOVITS Z, FAN L. Syngas chemical looping gasification process:Bench-scale studies and reactor simulations[J]. AIChE, 2010,56(8):2186-2199. doi: 10.1002/aic.12093
DING N, ZHANG C, LUO C, ZHENG Y, LIU Z. Effect of hematite addition to CaSO4 oxygen carrier in chemical looping combustion of coal char[J]. RSC Adv, 2015,5(69):56362-56376. doi: 10.1039/C5RA06887H
CUI Xiao-jing, MA Li-Ping, YANG Jie, WANG Dong-dong, ZHENG Da-long, YANG Jing, WANG Li-cun. Effect of Fe2O3, SiO2, Al2O3 on chemical looping combustion of phosphogypsum[J]. Bull Chin Ceramic Soc, 2018,37(5):1589-1594.
WABG B, LI J, DING N, MEI D, ZHAO H, ZHENG C. Chemical looping combustion of a typical lignite with CaSO4-CuO mixed oxygen carrier[J]. Energy Fuels, 2017,31(12):13942-13954. doi: 10.1021/acs.energyfuels.7b02584
HAN Jian. Experimental study on chemical looping combustion of gas fuel based on calcium based oxygen carrier[D]. Wuhan: Huazhong University of Science and Technology, 2014.
LIU Yong-qiang, WANG Zhi-qiang, WU Jin-hu, WU Jing-li, XU Mei. Study on chemical looping combustion characteristics of copper based oxygen carriers and combustible solid waste[J]. J Fuel Chem Technol, 2013,41(9):1056-1063.
GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, ZHENG Min, WU Jia-hua. Study on the reactivity of Fe2O3 oxygen carrier in coal chemical looping combustion[J]. J Fuel Chem Technol, 2009,37(5):513-520.
WANG B, YAN R, ZHENG Y, ZHAO H, ZHENG C. Mechanistic investigation of chemical looping combustion of coal with Fe2O3 oxygen carrier[J]. Fuel, 2011,90(7):2359-2366. doi: 10.1016/j.fuel.2011.03.009
YANG J, MA L, YANG J, GUO Z, LIU H, ZHANG W. Chemical looping gasification of phosphogypsum as an oxygen carrier:The Ca and S migration mechanism using the DFT method[J]. Sci Total Environ, 2019,689(7):854-864.
WANG B, YAN R, ZHENG Y, ZHAO H, ZHENG C. Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier[J]. J Fuel Chem Technol, 2011,39(4):251-257. doi: 10.1016/S1872-5813(11)60019-4
ZOU Xi-xian, ZHAO Hai-bo, ZHENG Chu-guang. Technical and economic evaluation of chemical looping coal fired serial fluidized bed power station[J]. Proc CSEE, 2014,34(35):6286-6295.
ZHENG M, SHEN L, FENG X. In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore[J]. Energy Convers Manage, 2014,83(7):270-283.
SONG T, ZHENG M, SHEN L, ZHANG T, XIAO J. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal[J]. Ind Eng Chem Res, 2013,52(11):4059-4071. doi: 10.1021/ie400070e
JIA Wei-hua, HU Xiu-de, LIU Yong-zhuo, YANG Ming-ming, GUO Qing-jie. Chemical looping combustion characteristics of Ca-Fe/bentonite oxygen carriers and coal[J]. J Fuel Chem Technol, 2014,42(9):1060-1067.
BAI Xue-feng, YIN Xue-feng, DENG Yu-jie, LU Meng. PAHs formation in direct chemical looping combustion of CaSO4/Bentonite oxygen carrier coal[J]. J China Coal Soc, 2017,42(7):1854-1862.
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yiming Liang , Ziyan Pan , Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Shuixing Dai , Jilei Jiang , Yuxiao Wang , Jinqi Hu , Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
(a): before purification; (b): after purification; (c): SEM morphological feature
(a): gas concentration; (b): carbon conversion; (c): carbon conversion rate
(a): carbon conversion; (b): carbon conversion rate
(a): H2S release; (b): COS release; (c): SO2 release
(a): carbon conversion; (b): carbon conversion rate
(a): H2S release; (b): COS release; (c): SO2 release
(a): carbon conversion; (b): carbon conversion rate
(a): H2S release; (b): COS release; (c): SO2 release