Citation: ZHANG Xiao-yu, HUANG Wei, GAO Zhi-hua, ZHANG Lin, SHI Pei-xiang, BIAN Zhong-kai. Effect of the source of Cu on the structure and performance of Cu-Zn-Al catalysts prepared by complete liquid-phase technology[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1240-1248. shu

Effect of the source of Cu on the structure and performance of Cu-Zn-Al catalysts prepared by complete liquid-phase technology

Figures(7)

  • Three kinds of Cu-Zn-Al slurry catalysts were prepared respectively with copper citrate, copper nitrate and copper acetate as the source of copper by complete liquid-phase technology. The effects of different sources of copper on the catalytic performance of dimethyl ether synthesis from syngas were investigated. The catalysts were characterized by XRD, H2-TPR, NH3-TPD, BET, XPS and TEM. The results indicated that the texture morphology and catalytic performance of the catalysts varied significantly. The catalyst prepared with copper citrate showed the best dispersion of Cu species in the catalyst and the largest amount of reducable substance. Meanwhile, the Cu species have strongest interaction with other components. Copper citrate increased the ratio of the amount of weak acid and strong acid on the surface of catalysts, and also improved the performance of the catalyst for methanol dehydration. So the catalytic performance of the catalyst pre-pared with copper citrate was the best. The conversion of CO was 63.4% and the DME selectivity was 66.0%.
  • 加载中
    1. [1]

      LI Zhong, XIE Ke-chang.Modern Coal Chemical Technology Books-Coal Base Methanol-Ether Fue l (Vol.8)[M].Beijing:Chemical Industry Press, 2001.

    2. [2]

      FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether:A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997,107(6):117-125.

    3. [3]

      HU Yi-zhi, LI Hong-jin, HAN Dong-qing. Dimethyl ether-the clean fuel in the 21st century[J]. Coal Chem Ind, 2006,34(5):10-14.  

    4. [4]

      ADACHI Y, KOMOTO M, WATANABE I, OHNO Y, FUJIMOTO K. Effective utilization of remote coal through dimethyl ether synthesis[J]. Fuel, 2000,79(3):229-234.  

    5. [5]

      FLEISCH T H, BASU A, SILLS R A. Introduction and advancement of a new clean global fuel:The status of DME developments in China and beyond[J]. J Nat Gas Sci Eng, 2012,9(2):94-107.  

    6. [6]

      ZHOU L, HU S, LI Y, ZHOU Q. Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity[J]. Chem Eng J, 2008,136(1):31-40. doi: 10.1016/j.cej.2007.03.025

    7. [7]

      BIE Liang-wei, WANG Hua. Advances in developments of the catalysts for one-step synthesis of dimethyl ether from syngas[J]. Ind Catal, 2009,17(2):34-39.  

    8. [8]

      WANG He-ping. Advances in one-step synthesis of dimethyl ether from syngas[J]. Ind Catal, 2003,11(5):34-38.  

    9. [9]

      TAN Yi-sheng, XIE Hong-juan, CUI Hai-tao, HAN Yi-zhuo, ZHONG Bing. Effect of V2O5/Sm2O3 modification on alum ina performance for slurry phase dimethyl ether synthesis[J]. J Fuel Chem Technol, 2005,33(5):602-606.  

    10. [10]

      PRASAD P S S, BAE J W, KANG S H, LEE Y H, JUN K W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts:The superiority of ferrierite over the other zeolites[J]. Fuel Process Technol, 2008,89(12):1281-1286. doi: 10.1016/j.fuproc.2008.07.014

    11. [11]

      MORADI G R, NOSRATI S, YARIPOR F. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether fromsynthesis gas[J]. Catal Commun, 2007,8(3):598-606. doi: 10.1016/j.catcom.2006.08.023

    12. [12]

      HUANG Wei, GAO Zhi-hua, HAO Li-fen, YIN Li-hua, XIE Ke-chang.The liquid phase preparation technology of catalyst used in slurry reactor:CN, 1613560[P].2005-05-11.

    13. [13]

      GAO Z H, HAO L F, WEI H, XIE K C. A novel liquid-phase technology for the preparation of slurry catalysts[J]. Catal Lett, 2005,102(3):139-141.

    14. [14]

      GAO Zhi-hua, HUANG Wei, HAO Li-feng, XIE Ke-chang. Liquid-phase preparation of CuO/ZrO2 catalyst used in slurry reactors and Its catalytic activity for CO hydrogenation[J]. Chin J Catal, 2006,27(1):86-90.

    15. [15]

      FAN Jin-chuan, WU Hui, HUANG Wei, SHI Yu, XIE Ke-chang. Effect of composition of raw materials on structure and dimethyl ether synthesis activity of Cu-Zn-Al catalyst prepared by complete liquid phase method[J]. Chin J Catal, 2007,28(12):1062-1066.  

    16. [16]

      GAO Z H, HUANG W, YIN L, XIE K C. Liquid-phase preparation of catalysts used in slurry reactors to synthesize dimethyl ether from syngas:Effect of heat-treatment atmosphere[J]. Fuel Process Technol, 2009,90(12):1442-1446. doi: 10.1016/j.fuproc.2009.06.022

    17. [17]

      GAO Zhi-hua, HUANG Wei, WANG Jiang-yong, YIN Li-hua, XIE Ke-chang. Complete liquid-phase preparation and characterization of Cu-Zn-Al-Zr slurry catalysts for synthesis of dimethyl ether[J]. Acta Chim Sin, 2008,66(3):295-300.  

    18. [18]

      FAN J C, CHEN C Q, ZHAO J, HUANG W, XIE K C. Effect of surfactant on structure and performance of catalysts for DME synthesis in slurry bed[J]. Fuel Process Technol, 2010,91(4):414-418. doi: 10.1016/j.fuproc.2009.05.005

    19. [19]

      WANG Peng, HUANG Wei, TANG Yu, SUN Kai, ZHANG Xiao-yu. Effect of alcohols and usage amount on performance of catalyst prepared by complete liquid phase technology[J]. J Taiyuan Univ Technol, 2013,44(5):551-556.  

    20. [20]

      FAN Jin-chuan, YANG Rui-qing, ZHAO Jie, HUANG Wei. Chemical change of copper species in liquid paraffin[J]. Chin J Appl Chem, 2013,30(1):67-72.  

    21. [21]

      LIU L, HUANG W, GAO Z, YIN L. The dehydration of methanol to dimethyl ether over a novel slurry catalyst[J]. Energ Source, Part A, 2010,32(15):1379-1387. doi: 10.1080/15567030903030724

    22. [22]

      SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acid and alkaline silica sol on the performance of Cu/Zn/Al slurry catalysts[J]. J Fuel Chem Technol, 2015,43(10):1221-1229. doi: 10.1016/S1872-5813(15)30037-2

    23. [23]

      ZHANG Zhi-hong, WANG Yu-feng, ZHANG Shao-yu. Nickel oxide prepared by solid state reaction with citric acid[J]. Mater Mech Eng, 2010,34(1):49-51.  

    24. [24]

      MA Qiang, HUANG Wei, FAN Jin-chuan, ZHAO Jie, REN Jie. Study on the deactivation of Cu-Zn-Si-Al slurry catalyst prepared by complete liquid-phase for one-step dimethyl ether synthesis[J]. J Mol Catal, 2009,23(6):499-505.  

    25. [25]

      FAN Jin-chuan, WU Hui, HUANG Wei, XIE Ke-chang. Effect of surfactants on structure and performance of Cu-Zn-Al catalyst prepared by complete liquid-phase technology[J]. Chem J Chin Univ, 2008,29(5):993-999.  

    26. [26]

      HUANG Wei, LIU Yong-jun, ZUO Zhi-jun. Effect of Al content on synthesis of methanol over Cu-Zn-Al catalyst prepared by complete liquid-phase technology[J]. J Taiyuan Univ Technol, 2012,43(4):401-405.  

    27. [27]

      RAMOS F S, FARIAS A M, BORGES L E P, MONTEIRO J L, FRAGA M A, SOUSA A, APPEL L G. Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures[J]. Catal Today, 2005,101(1):39-44. doi: 10.1016/j.cattod.2004.12.007

    28. [28]

      YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. The effects of synthesis operation conditions on the properties of modifiedγ-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design[J]. Fuel, 2015,139(1):40-50.

    29. [29]

      LI Z Z, ZUO Z J, HUANG W, XIE K C. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci, 2011,257(6):2180-2183. doi: 10.1016/j.apsusc.2010.09.069

    30. [30]

      SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2, catalysts for methanol synthesis from CO/H2[J]. Catal Today, 2000,63(2):447-452.

    31. [31]

      VELU S, SUZUKI K, VIJAYARAJ M, BARMAN S, GOPINATH C S. In situ XPS investigations of Cu1-xNixZnAl mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol[J]. Appl Catal B:Environ, 2005,55(4):287-299. doi: 10.1016/j.apcatb.2004.09.007

    32. [32]

      LI Zhi-hong, HUANG Wei, ZUO Zhi-jun, SONG Ya-jun, XIE Ke-chang. XPS study on CuZnAl catalysts prepared by different methods for direct synthesis of dimethyl ether[J]. Chin J Catal, 2009,30(2):171-177.  

    33. [33]

      SUN K, LU W, WANG M, XU X. Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5 catalysts[J]. Catal Commun, 2004,5(7):367-370. doi: 10.1016/j.catcom.2004.03.012

    34. [34]

      OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface characterization of CuO-ZnO methanol-synthesis catalysts by X-ray photoelectron spectroscopy.1.Precursor and calcined catalysts[J]. J Phys Chem, 1983,87(19):3740-3747. doi: 10.1021/j100242a034

    35. [35]

      DENISE B, SNEEDEN R P A, BEGUIN B, CHERIFI O. Supported copper catalysts in the synthesis of methanol:N2O-titrations[J]. Appl Catal, 1987,30(2):353-363. doi: 10.1016/S0166-9834(00)84125-1

    36. [36]

      FAN Jin-chuan, HUANG Wei, JI Peng. Comparison of catalytic performances between complete liquid-phase's catalyst and Sol-gel's catalyst for slurry synthesis dimethyl ether[J]. Chem J Chin Univ, 2011,32(6):1360-1365.  

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(0)
  • Abstract views(636)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return