Citation: LI Xu-he, FANG Lei, YANG Hao, ZHANG Jian, LIANG Fei-xue, WANG Hai-yan, WANG Yan-juan. Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 174-182. shu

Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization

  • Corresponding author: ZHANG Jian, zhangjian_lnpu@163.com LIANG Fei-xue, 
  • Received Date: 29 September 2018
    Revised Date: 10 December 2018

    Fund Project: The project was supported by the Natural Science Foundation of Liaoning Province (20170540475) and Pilot Program of University of Liao-ning Innovation and Education Reformthe Natural Science Foundation of Liaoning Province 20170540475

Figures(10)

  • A series of supported [Bmim]3PW12O40/g-C3N4 catalysts (BPWO/g-C3N4) was prepared by coprecipitation, with 1-butyl-3-methylimidazole bromide, phosphotungstic acid and g-C3N4 as the raw materials. The morphology and structure of the BPWO/g-C3N4 catalysts were characterized by XRD, FT-IR, UV-vis, N2 physisorption, TEM and XPS; the effects of catalyst composition, oxygen to sulfur (O/S) ratio, catalyst amount and reaction temperature on the oxidative desulphurization efficiency were investigated by using n-heptane solution of dibenzothiophene (DBT) as a model oil and hydrogen peroxide as the oxidant. The results indicate that the BPWO/g-C3N4 catalysts have a Keggin-type heteropoly anionic structure and BPWO is well dispersed on g-C3N4. The BPWO(20%, mass ratio)/g-C3N4 catalyst exhibits the optimal oxidation performance towards DBT. Under 50℃ and with a O/S molar ratio of 6.0, DBT in the model oil with a concentration of 800 μg/g can be completely oxidized over the BPWO(20%, mass tatio)/g-C3N4 catalyst in 180 min. Moreover, the BPWO(20%, mass ratio)/g-C3N4 catalyst displays a good reusability and can be recycled for at least 8 cycles without any decrease in the DBT oxidation activity.
  • 加载中
    1. [1]

      TIAN Chun-rong. China's oil imports and exports in 2017[J]. Int Pet Econ, 2018,26(3):10-20. doi: 10.3969/j.issn.1004-7298.2018.03.002

    2. [2]

      ZHAO Di-shun, LI Jun-pan, ZHANG Juan, REN Pei-bing, GE Jing-jing, REN Teng-jie, CUI Yun. Extractive desulfurization of fule oil with metal-based hyamine lonic liquids[J]. Chin J Org Chem, 2014,34(7):1462-1468.  

    3. [3]

      KOBAYASHI T, LI Y Y. Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization[J]. Bioresour Technol, 2011,102(10):5580-5588.  

    4. [4]

      NEKHOROSHEV V P, NEKHOROSHEV S V, TUROV Y P, KHARITONOVA V E, KHALYAPOVA A D. Composition of concentrates isolated by complexation with aluminum and zinc halides from petroleum fuel fractions during their desulfurization[J]. Pet Chem, 2018,58(5):400-406. doi: 10.1134/S0965544118050134

    5. [5]

      DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol, 2018,46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010 

    6. [6]

      FAZLE S, SOBIA A, YAN Z F, LIU Z, MUHAMMAD I, ROOH U, ETIM U J, AYAZ A. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization[J]. Chem Eng J, 2018,339:557-565.  

    7. [7]

      YANG P, ZHOU S Y, DU Y, LI J S, LEI J H. Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels[J]. J Porous Mater, 2017,24(2):531-539. doi: 10.1007/s10934-016-0288-7

    8. [8]

      ZHU W S, WU P W, YANG L, CHANG Y H, CHAO Y H, LI H M, JIANG Y Q, JIANG W, XUN S H. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem Eng J, 2013,229(4):250-256.  

    9. [9]

      LV G J, DENG S L, ZHAI Y, ZHU Y Q, LI H C, WANG F M, ZHANG X B. P123 lamellar micelle-assisted construction of hierarchical TS-1 stacked nanoplates with constrained mesopores for enhanced oxidative desulfurization[J]. Appl Catal A:Gen, 2018,567:28-35.

    10. [10]

      YUE S, SONG Q, ZANG S L, DENG G C, LI J. Synthesis of polyoxomolybdate-quinoline compounds beads for catalytic oxidative desulfurization[J]. Mol Catal, 2018,455:88-94. doi: 10.1016/j.mcat.2018.02.014

    11. [11]

      ZHAO R J, WANG J L, ZHANG D D, SUN Y H, HAN B X, TANG N, WANG N, LI K X. Biomimetic oxidative desulfurization of fuel oil in ionic liquids catalyzed by Fe (Ⅲ) porphyrins[J]. Appl Catal A:Gen, 2017,532:26-31. doi: 10.1016/j.apcata.2016.12.008

    12. [12]

      WANG Jian-long, ZHAO Di-shun, ZHOU Er-dong, DONG Zhi. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007,35(3):293-296. doi: 10.3969/j.issn.0253-2409.2007.03.008 

    13. [13]

      HUANG D, WANG Y J, AND L M Y, LUO G S. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006,45(6):1880-1885. doi: 10.1021/ie0513346

    14. [14]

      ZHAO D S, SUN Z M, LI F T, LIU R, SHAN H D. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr-2C6H11NO coordinated ionic liquid[J]. Energy Fuels, 2008,22(5):3065-3069. doi: 10.1021/ef800162w

    15. [15]

      HOU Ying-fei, LI Li-jun, JIANG Chi, GUO Ning, NIU Qing-shan. Preparation and performance of phosphotungstic acid/activated carbon catalyst for catalytic oxidative desulfurization[J]. Chem Ind Eng Prog, 2017,36(11):4072-4079.  

    16. [16]

      XING Peng-fei, LI Xiu-ping, JIA Bao-jun, ZHAO Rong-xiang. Preparation of MoO3/g-C3N4 catalyst and its application in the oxidation desulfurization of model oil[J]. Chem Ind Eng Prog, 2016,35(12):3934-3941.  

    17. [17]

      LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid[J]. J Fuel Chem Technol, 2017,45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009 

    18. [18]

      LI X Z, ZHU W, LU X W, ZUO X H, YAO C, NI C Y. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization:Mechanism, kinetics and influencing factors[J]. Chem Eng J, 2017,326:87-98.  

    19. [19]

      RAO G R, RAJKUMAR T, VARGHESE B. Synthesis and characterization of 1-butyl 3-methyl imidazolium phosphomolybdate molecular salt[J]. Solid State Sci, 2009,11(1):36-42.  

    20. [20]

      LI G Z, SALIM C, HINODE H. Hydrothermal syntheses and crystal structures of two hybrid materials constructed from polyoxometalate clusters and metal-dipyridine complexes[J]. Solid State Sci, 2008,10(2):121-128.  

    21. [21]

      YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009,25(17):10397-10401.  

    22. [22]

      WANG X C, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catal, 2012,2(8):1596-1606.  

    23. [23]

      ZHANG J S, CHEN X F, TAKANABE K, MAEDA K, DOMEN K, EPPING J D, FU X Z, ANTONIETTI M, WANG X C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angew Chem Int Ed, 2010,49(2):441-444.  

    24. [24]

      CHAI B, PENG T Y, MAO J, LI K, ZAN L. Graphitic carbon nitride (g-CN)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys, 2012,14(48):16745-16752.  

    25. [25]

      GE L, HAN C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity[J]. Appl Catal B:Environ, 2012,117-118(1):268-274.  

    26. [26]

      LEI W W, PORTENHAULT D, DIMOVA R, ANTONIETTI M. Boron carbon nitride nanostructures from salt melts:Tunable water-soluble phosphors[J]. J Chem Soc, 2011,133(18):5300-5303.  

    27. [27]

      HE T, YAO J. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates[J]. Prog Mater Sci, 2006,51(6):810-879.  

    28. [28]

      ZHANG-Jian. Oxidative desulfurization of sulfur-containing compounds in diesel using molybdenum-based catalysts[D]. Dalian: Dalian University of Technology, 2011. 

    29. [29]

      GU Y, CHEN L, SHI L, MA J, YANG Z, QIAN Y. Synthesis of CN and graphite by reacting cyanuric chloride with calcium cyanamide[J]. Carbon, 2003,41(13):2674-2676.  

    30. [30]

      PETTERSON T A, CARVER J C, LEYDEN D E, HERCULES D M. A surface study of cobalt-molybdena-alumina catalysts using X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80(15):1700-1708.  

    31. [31]

      DONG F, WU L, SUN Y, FU M, WU Z B, LEE S C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J Mater Chem, 2011,21(39):15171-15174.  

    32. [32]

      NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80(19):2094-2102.  

    33. [33]

      TUREK W, EDYTA S P, PRO-A , HABER J. Propylene oxidation over poly(azomethines) doped with heteropolyacids[J]. J Catal, 2000,189(2):297-313.  

    34. [34]

      DUNCAN D C, CHAMBERS R C, HECHT E, HILL C L. Mechanism and dynamics in the H3[PW12O40]- catalyzed selective epoxidation of terminal olefins by H2O2 formation, reactivity, and stability of {PO4[WO(O2)2]4}3-[J]. J Appl Biomech, 1995,15(2):95-105.  

    35. [35]

      NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80(19):2094-2102.  

    36. [36]

      HUANG D, WANG Y J, AND L M Y, LUO G S. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006,45(6):1880-1885.  

    37. [37]

      HUANG D, ZHAI Z, LU Y C, YANG L M, LUO G S. Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization[J]. Ind Eng Chem Res, 2007,46(5):1447-1451.  

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(6)
  • Abstract views(1060)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return