Citation: ZHANG Jian-li, WANG Xu, MA Li-ping, YU Xu-fei, Ma Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1489-1498. shu

Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation

  • Corresponding author: ZHANG Jian-li, zhangjl@nxu.edu.cn ZHAO Tian-sheng, zhaots@nxu.edu.cn
  • Received Date: 20 July 2017
    Revised Date: 26 September 2017

    Fund Project: the National Natural Science Foundation of China 21666030The project was supported by the National Natural Science Foundation of China (21666030, 21366025) and the National First-Rate Discipline onstruction Project of Ningxia (Chemical Engineering and Technology)the National Natural Science Foundation of China 21366025

Figures(10)

  • A series of K promoted K/MgFeAl-HTLcs catalysts with different Mg/Fe/Al molar ratios were prepared by means of coprecipitation and impregnation method for direct synthesis of light olefins from CO hydrogenation. The samples were characterized by XRD, N2 adsorption-desorption, SEM, TG, H2-TPR and XPS measurements. The results show that MgFeAl-HTLcs catalyst precursors has typical layered structure. MgO, Fe2O3 and small amount of MgFeAlO4 are formed after calcination. MgCO3 and Fe3O4 could be observed after reaction, and a little Fe5C2 iron carbide with broad and weak peaks appear simultaneously. Thermal stability of K/MgFeAl-HTLcs is improved due to recovery of hydrotalcite-like structure after K promotion. With increase of Al content, specific surface area of the precursors decreases monotonically after structure reconstruction. Reduction of Fe2O3 to Fe3O4 is inhibited with addition of Al, compared with K/Mg-Fe sample. Fe enrichment before reaction and K enrichment after reaction are observed on secondary calcination samples. During CO hydrogenation, the prepared samples show high activity and C2-4= selectivity with low C5+ weight fraction. C5+ hydrocarbons decrease and olefin selectivity increases with increasing Fe/Al molar ratio. The C5+ decreases from 22.17% to 10.90%, and C2-4= weight content increases from 40.98% to 47.28% on K/1.5Mg-0.67Fe-0.33Al sample compared with that of K/1.5Mg-0.67Fe sample.
  • 加载中
    1. [1]

      TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012,335(6070):835-838. doi: 10.1126/science.1215614

    2. [2]

      JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    3. [3]

      CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016,55(15):4725-4728. doi: 10.1002/anie.201601208

    4. [4]

      ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786

    5. [5]

      ZHAI P, XU C, GAO R, LIU X, LI M Z, LI W Z, FU X P, JIA C J, XIE J L, ZHAO M, WANG X P, LI Y W, ZHANG Q W, WEN X D, MA D. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew Chem Int Ed, 2016,55(34):9902-9907. doi: 10.1002/anie.201603556

    6. [6]

      YU Fei, LI Zheng-jia, AN Yun-lei, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins. J Fuel Chem Technol, 2016, 44(7):801-814. 

    7. [7]

      CAVANI F, TRIFIRÒF , VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991,11(2):173-301. doi: 10.1016/0920-5861(91)80068-K

    8. [8]

      GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014,30(6):1155-1162. doi: 10.3866/PKU.WHXB201401252

    9. [9]

      FRONZO A D, PIROLA C, COMAZZI A, GALLI F, BIANCHI C L, MICHELE A D, VIVANI R, NOCCHETTI M, BASTIANINI M, BOFFITO D C. Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process[J]. Fuel, 2014,119(3):62-69.  

    10. [10]

      XIE Xian-mei. Study on the preparation, performances and application of hydrotalcite-like-compounds[D]. Taiyuan:Taiyuan University of Technology, 2006. 

    11. [11]

      MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. J Fuel Chem Technol, 2016,44(4):449-456.  

    12. [12]

      VISCONTI C G, LIETTI L, TRONCONI E, FORZATTI P, ZENNARO R, FINOCCHIO E. Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas[J]. Appl Catal A:Gen, 2009,355(1/2):61-68.  

    13. [13]

      PARK S J, BAE J W, OH J H, CHARY K V R, SAI PRASAD P S, JUN K W, RHEE Y W. Influence of bimodal pore size distribution of Ru/Co/ZrO2-Al2O3 during Fischer-Tropsch synthesis in fixed-bed and slurry reactor[J]. J Mol Catal A:Chem, 2009,298(1):81-87.  

    14. [14]

      TOSHIYUKI HIBINO, YASUMASA Y, KATSUNORI K, ATSUMU T. Decarbonation behavior of Mg-A1-CO3 hydrotalcite-like compounds during heat treatment[J]. Clay Clay Miner, 1995,43(4):427-432. doi: 10.1346/CCMN

    15. [15]

      VALENTE J S, PRINCE J, MAUBERT A M, LARTUNDO-ROJAS L, ANGEL P D, FERRAT G, HERNANDEZ J G, LOPEZ-SALINAS E. Physicochemical study of nanocapsular layered double hydroxides evolution[J]. J Phys Chem C, 2009,113(14):5547-5555. doi: 10.1021/jp810293y

    16. [16]

      ZHAO M Q, ZHANG Q, ZHANG W, HUANG J Q, ZHANG Y H, SU D S, WEI F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J Am Chem Soc, 2010,132(42):14739-14741. doi: 10.1021/ja106421g

    17. [17]

      JOZWIAK W K, KACZMAREK E, MANIECKI T P, IGNACZAK W, MANIUKIEWICZ W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Appl Catal A:Gen, 2007,326(1):17-27. doi: 10.1016/j.apcata.2007.03.021

    18. [18]

      LI S, LI A, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001,77(4):197-205. doi: 10.1023/A:1013284217689

    19. [19]

      SUO H, WANG S, ZHANG C, XU J, WU B, YANG Y, XIANG H, LI Y. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.  

    20. [20]

      GAO X, SHEN J, HSIA Y, CHEN Y. Reduction of supported iron oxide studied by temperature-programmed reduction combined with mössbauer spectroscopy and X-ray diffraction[J]. J Chem Soc Faraday Trans, 1993,89(7):1079-1084. doi: 10.1039/FT9938901079

    21. [21]

      CHEN K, FAN Y, HU Z, YAN Q. Carbon monoxide hydrogenation on Fe2O3/ZrO2 catalysts[J]. Catal Lett, 1996,36(3/4):139-144.  

    22. [22]

      QIN S D, ZHANG C H, XU J, YANG Y, XIANG H W, LI Y W. Fe-Mo interactions and their influence on Fischer-Tropsch synthesis performance[J]. Appl Catal A:Gen, 2011,392(1/2):118-126.  

    23. [23]

      HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H J. The mechanism of potassium promoter:Enhancing the stability of active surfaces[J]. Angew Chem Int Edit, 2011,50(32):7403-7406. doi: 10.1002/anie.v50.32

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(4)
  • Abstract views(902)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return