Citation: Xianshun Sun, Xiaodong Zhang. Progress in Photocatalytic Selective Oxidation Reactions of Reactive Oxygen Species[J]. Chemistry, ;2021, 84(1): 16-20. shu

Progress in Photocatalytic Selective Oxidation Reactions of Reactive Oxygen Species

  • Corresponding author: Xiaodong Zhang, zhxid@ustc.edu.cn
  • Received Date: 21 August 2020
    Accepted Date: 25 September 2020

Figures(5)

  • Reactive oxygen species (ROS) play vital roles in photocatalytic selective oxidation reactions. Researchers fabricate variety of materials to optimize their ROS generation, which enhances the efficiency of corresponding photocatalytic reactions and facilitates the future green industrialization process. This review summarizes common ROS generation along with their photocatalytic mechanisms, and the testing methods of different ROS are also introduced. This paper provides new thoughts for optimizing photocatalytic reactions.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

       

    6. [6]

    7. [7]

      Lewis N S. Science, 2007, 315(5813): 798~801. 

    8. [8]

    9. [9]

      Lewis N S, Nocera D G. PNAS, 2006, 103(43): 15729~15735. 

    10. [10]

      Yoon T P, Ischay M A, Du J. Nat. Chem., 2010, 2(7): 527. 

    11. [11]

      Schultz D M, Yoon T P. Science, 2014, 343(6174): 1239176. 

    12. [12]

      Lewis N S. Science, 2016, 351(6271): aad1920.

    13. [13]

      Gong J, Li C, Wasielewski M R. Chem. Soc. Rev., 2019, 48(7): 1862~1864. 

    14. [14]

      Sun X, Zhang X, Xie Y. Matter, 2020, 2(4): 842~861. 

    15. [15]

      Narayanam J M R, Stephenson C R J. Chem. Soc. Rev., 2011, 40(1): 102~113. 

    16. [16]

      Zhang Y, Zhang N, Tang Z R, et al. Chem. Sci., 2013, 4(4): 1820~1824. 

    17. [17]

      Wang H, Jiang S, Chen S, et al. Adv. Mater., 2016, 28(32): 6940~6945. 

    18. [18]

      Wang H, Chen S, Yong D, et al. J. Am. Chem. Soc., 2017, 139(13): 4737~4742. 

    19. [19]

      Wang H, Jiang S, Shao W, et al. J. Am. Chem. Soc., 2018, 140(9): 3474~3480. 

    20. [20]

      Sun X, Luo X, Zhang X, et al. J. Am. Chem. Soc., 2019, 141(9): 3797~3801. 

    21. [21]

      Wang H, Jiang S, Liu W, et al. Angew. Chem. Int. Ed., 2020, 132(27): 11186~11193. 

    22. [22]

      Wang H, Yong D, Chen S, et al. J. Am. Chem. Soc., 2018, 140(5): 1760~1766. 

    23. [23]

      Wang H, Sun X, Li D, et al. J. Am. Chem. Soc., 2017, 139(6): 2468~2473. 

    24. [24]

      Zhang N, Li X, Ye H, et al. J. Am. Chem. Soc., 2016, 138(28): 8928~8935. 

    25. [25]

      Nagai R, Matsumoto K, Ling X, et al. Diabetes, 2000, 49(10): 1714~1723. 

    26. [26]

      Sheldon R A, Kochi J K. Metal-Catalyzed Oxidations of Organic Compounds. Academic Press, New York, 1981.

    27. [27]

      Sheldon R A, Arends I, Dijksman A. Catal. Today, 2000, 57(1-2): 157~166. 

    28. [28]

      Uchida K. Free Radical Biol. Med., 2000, 28(12): 1685~1696. 

    29. [29]

      Ding J, Xu W, Wan H, et al. Appl. Catal. B, 2018, 221: 626~634. 

    30. [30]

      Legros J, Dehli J R, Bolm C. Adv. Synth. Catal., 2005, 347(1): 19~31. 

    31. [31]

      Selvam J J P, Suresh V, Rajesh K, et al. Tetrahed. Lett., 2008, 49(21): 3463~3465. 

    32. [32]

      Clennan E L. Acc. Chem. Res., 2001, 34(11): 875~884. 

    33. [33]

      Foote C S, Peters J W. J. Am. Chem. Soc., 1971, 93(15): 3795~3796. 

    34. [34]

      Toutchkine A, Clennan E L. J. Am. Chem. Soc., 2000, 122(8): 1834~1835. 

    35. [35]

      Chen Z, Liu C, Liu J, et al. Adv. Mater., 2020, 32(4): 1906437. 

    36. [36]

      Acero J L, Stemmler K, von Gunten U. Environ. Sci. Technol., 2000, 34(4): 591~597. 

    37. [37]

      Watts M J, Linden K G. Water Res., 2007, 41(13): 2871~2878. 

    38. [38]

      Lawrence A, Jones C M, Wardman P, et al. J. Biol. Chem., 2003, 278(32): 29410~29419. 

    39. [39]

      Timmins G S, Master S, Rusnak F, et al. J. Bacteriol., 2004, 186(16): 5427~5431. 

    40. [40]

      Long R, Mao K, Ye X, et al. J. Am. Chem. Soc., 2013, 135(8): 3200~3207. 

    41. [41]

      Ma Z, Li P, Ye L, et al. J. Mater. Chem. A, 2017, 5(47): 24995~25004. 

    42. [42]

      Ye L, Liu J, Gong C, et al. ACS Catal., 2012, 2(8): 1677~1683. 

    43. [43]

      Lindig B A, Rodgers M A J, Schaap A P. J. Am. Chem. Soc., 1980, 102(17): 5590~5593. 

    44. [44]

      Shen X, He F, Wu J, et al. Langmuir, 2011, 27(5): 1739~1744. 

    45. [45]

      Humayun M, Xu L, Zhou L, et al. Nano Res., 2018, 11(12): 6391~6404. 

  • 加载中
    1. [1]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    2. [2]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    3. [3]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    6. [6]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

Metrics
  • PDF Downloads(175)
  • Abstract views(4517)
  • HTML views(2030)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return