Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural
- Corresponding author: CUI Hong-you, cuihy@sdut.edu.cn YI Wei-ming,
Citation:
ZHU Li-wei, WANG Jian-gang, ZHAO Ping-ping, SONG Feng, SUN Xiu-yu, WANG Li-hong, CUI Hong-you, YI Wei-ming. Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(6): 651-659.
LIN Mu-sen, JIANG Jian-chun. A review on fast pyrolysis of biomass[J]. Biomass Chem Eng, 2006,40(1):21-26.
RUSSO P A, ANTUNES M A, NEVES P, WIPER P V, FAZIO E, NERI F, BARRECA F, MAFRA L, PILLINGER M, PINNA N, VALENTE A A. Mesoporous carbon-silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries[J]. Green Chem, 2014,16(9):4292-4305. doi: 10.1039/C4GC01037J
OSATIASHTIANI A, LEE A F, GRANOLLERS M, BROWN D R, OLIVI L, MORALES G, MELERO J A, WILSON K. Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF[J]. ACS Catal, 2015,5(7):4345-4352. doi: 10.1021/acscatal.5b00965
CHOUDHARY V, MUSHRIF S H, HO C, ANDERKO A, NIKOLAKIS V, MARINKOVIC N S, FRENKEL A I, SANDLER S I, VLACHOS D G. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J]. J Amer Chem Soc, 2013,135(10):3997-4006. doi: 10.1021/ja3122763
TAKEUCHI Y, JIN F, TOHJI K, ENOMOTO H. Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances[J]. J Mate Sci, 2007,43(7):2472-2475.
SOUZA R L D, YU H, RATABOUL F, ESSAYEM N. 5-hydroxymethylfurfural (5-HMF) production from hexoses:Limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system[J]. Challenges, 2012,3(2):212-232. doi: 10.3390/challe3020212
MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, MAIRELES-TORRES P. Brønsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Chem Eng J, 2016,303:22-30. doi: 10.1016/j.cej.2016.05.120
SARAVANAMURUGAN S, PANIAGUA M, MELERO JA, RⅡSAGER A. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media[J]. J Am Chem Soc, 2013,135(14):5246-5249. doi: 10.1021/ja400097f
CUI M, HUANG R, QI W, SU R, HE Z. Cascade catalysis via dehydration and oxidation:One-pot synthesis of 2, 5-diformylfuran from fructose using acid and V2O5/ceramic catalysts[J]. RSC Adv, 2017,7(13):7560-7566. doi: 10.1039/C6RA27678D
JIMÉNEZ-MORALES I, MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, MAIRELES-TORRES P, JIMÉNEZ-LÓPEZ A. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Appl Catal B:Environ, 2014,154-155:190-196. doi: 10.1016/j.apcatb.2014.02.024
XUE Z, MA MG, LI Z, MU T. Advances in conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts[J]. RSC Adv, 2016,6:98874-98892. doi: 10.1039/C6RA20547J
XIAO Y, SONG Y F. Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride[J]. Appl Catal A:Gen, 2014,484:74-78. doi: 10.1016/j.apcata.2014.07.014
LI Y, LIU H, SONG C, GU X, LI H, ZHU W, YIN S, HAN C. The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid[J]. Bioresour Technol, 2013,133:347-353. doi: 10.1016/j.biortech.2013.01.038
SAMPATH G, KANNAN S. Fructose dehydration to 5-hydroxymethylfurfural:Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies[J]. Catal Commun, 2013,37:41-44. doi: 10.1016/j.catcom.2013.03.021
NAKAJIMA K, BABA Y, NOMA R, KITANO M, KONDO J N, HAYASHI S, HARA M. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites[J]. J Am Chem Soc, 2011,133(12):4224-4227. doi: 10.1021/ja110482r
MAURER S M, KO E I. ChemInform abstract:Structural and acidic characterization of niobia aerogels[J]. ChemInform, 1992,135(30):125-134.
RAMANATHAN A, ZHU H, MAHESWARI R, THAPA P S, SUBRAMANIAM B. Comparative study of Nb-incorporated cubic mesoporous silicates as epoxidation catalysts[J]. Ind Eng Chem Res, 2015,54(16):4236-4242. doi: 10.1021/ie504386g
YANG Z J, LI Y F, WU Q B, REN N, ZHANG Y H, LIU Z P, TANG Y. Layered niobic acid with self-exfoliatable nanosheets and adjustable acidity for catalytic hydration of ethylene oxide[J]. J Catal, 2011,280(2):247-254. doi: 10.1016/j.jcat.2011.03.026
TURCO R, ARONNE A, CARNITI P, GERVASINI A, MINIERI L, PERNICE P, TESSER R, VITIELLO R, DI SERIO M. Influence of preparation methods and structure of niobium oxide-based catalysts in the epoxidation reaction[J]. Catal Today, 2015,254:99-103. doi: 10.1016/j.cattod.2014.11.033
SRILATHA K, LINGAIAH N, DEVI BLAP, PRASAD RBN, VENKATESWAR S, PRASAD PSS. Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts[J]. Appl Catal A:Gen, 2009,365(1):28-33. doi: 10.1016/j.apcata.2009.05.025
DE LA CRUZ M H C, ABDEL-REHIM M A, ROCHA A S, DA SILVA J F C, DA COSTA FARO JR A, LACHTER E R. Liquid phase alkylation of anisole by benzyl alcohol catalyzed on alumina-supported niobia[J]. Catal Commun, 2007,8(11):1650-1654. doi: 10.1016/j.catcom.2007.01.019
WANG F, WU H Z, LIU C L, YANG R Z, DONG W S. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J]. Carbohydr Res, 2013,368:78-83. doi: 10.1016/j.carres.2012.12.021
NGEE E L S, GAO Y, CHEN X, LEE T M, HU Z, ZHAO D, YAN N. Sulfated mesoporous niobium oxide catalyzed 5-hydroxymethylfurfural formation from sugars[J]. Ind Eng Chem Res, 2014,53(37):14225-14233. doi: 10.1021/ie501980t
GAO J L, GAO S, LIU C L, LIU Z T, DONG W S. Synthesis, characterization, and catalytic application of ordered mesoporous carbon-niobium oxide composites[J]. Mate Res Bull, 2014,59(16):131-136.
GARCÍA-SANCHO C, AGIRREZABAL-TELLERIA I, GVEMEZ MB, MAIRELES-TORRES P. Dehydration of d-xylose to furfural using different supported niobia catalysts[J]. Appl Catal B:Environ, 2014,152-153:1-10. doi: 10.1016/j.apcatb.2014.01.013
ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548-552. doi: 10.1126/science.279.5350.548
LI Chun-jing, SHEN Jian, ZHANG Liang, WANG Chao. Catalytic synthesis of methyloleate by mesoporous sieve Nb2O5/SBA-15[J]. J Liaoning Univ Pet Chem Technol, 2008,28(4):9-15.
ZHANG Y, WANG J, LI X, LIU X, XIA Y, HU B, LU G, WANG Y. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts[J]. Fuel, 2015,139:301-307. doi: 10.1016/j.fuel.2014.08.047
ORDOMSKY V V, SUSHKEVICH V L, SCHOUTEN J C, VAN DER SCHAAF J, NIJHUIS T A. Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts[J]. J Catal, 2013,300(3):37-46.
HAFIZI H, NAJAFI CHERMAHINI A, SARAJI M, MOHAMMADNEZHAD G. The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica[J]. Chem Eng J, 2016,294:380-388. doi: 10.1016/j.cej.2016.02.082
KUO C H, POYRAZ A S, JIN L, MENG Y, PAHALAGEDARA L, CHEN S Y, KRIZ DA, GUILD C, GUDZ A, SUIB S L. Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates[J]. Green Chem, 2014,16(2):785-791. doi: 10.1039/c3gc40909k
LIU Yan-li, WANG Fu-yu, WANG Chong, ZHAO Zhen-bo. WO3/ZrO2 for fructose dehydration to 5-hydrocymethylfurfural as a solid acid catalyst[J]. Chem Int Eng Prog, 2014,33(1):105-109.
WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. J Fuel Chem Technol, 2016,44(11):1341-1347. doi: 10.3969/j.issn.0253-2409.2016.11.010
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Chengyao Zhao , Jingyuan Liao , Yuxiang Zhu , Yiying Zhang , Lianjie Zhai , Junrong Huang , Hengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337
Dexuan Xiao , Tianyu Chen , Tianxu Zhang , Sirong Shi , Mei Zhang , Xin Qin , Yunkun Liu , Longjiang Li , Yunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Xi Chen , Xue Zhang , Shuai Yang , Jie Wang , Tian Tang , Maling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021
Aimin Fu , Chunmei Chen , Qin Li , Nanjin Ding , Jiaxin Dong , Yu Chen , Mengsha Wei , Weiguang Sun , Hucheng Zhu , Yonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Tong Zhang , Chao Sun , Shubin Yang , Zimin Cai , Sifeng Zhu , Wendian Liu , Yun Luan , Cheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
Zhipeng Li , Qincong Feng , Jianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
reactions were carried out in water/MIBK (V/V=1/2) at 160 ℃ for 1.5 h; 0.5 g fructose and 0.1 g Nb-P/SBA-15 were added