Citation: ZHU Li-wei, WANG Jian-gang, ZHAO Ping-ping, SONG Feng, SUN Xiu-yu, WANG Li-hong, CUI Hong-you, YI Wei-ming. Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 651-659. shu

Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural

  • Corresponding author: CUI Hong-you, cuihy@sdut.edu.cn YI Wei-ming, 
  • Received Date: 27 February 2017
    Revised Date: 12 April 2017

    Fund Project: the National Natural Science Foundations of China 51536009National High Technology Research and Development Program of China 2012AA101808National High Technology Research and Development Program of China 863计划the National Natural Science Foundations of China 21506118the National Natural Science Foundations of China 21476132the National Natural Science Foundations of China 51406109

Figures(9)

  • Dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) is one of the pivotal reactions in conversion of biomass towards valuable platform compounds. In this work, Nb/SBA-15 was prepared via incipient wetness impregnation with self-made SBA-15 as support; Nb/SBA-15 was further treated with phosphoric acid and calcined at 450℃, to obtain the Nb-P/SBA-15 catalyst. The Nb-P/SBA-15 catalyst was characterized by SEM, TEM, BET, XRD and NH3-TPD; its performance in the dehydration of fructose to 5-HMF was then investigated. The results indicate that the microscopic structure of SBA-15 is well preserved in Nb/SBA-15 with an internal channel diameter of about 10 nm and the niobic species are highly dispersed on the surface of the channels; the wall of channels became thinner after impregnation of Nb and treatment with phosphoric acid. After the treatment with phosphoric acid, the weak acid sites are increased, moreover, the medium and strong acidic sites are generated in Nb-P/SBA-15; as a result, for the dehydration of fructose in a water/MIBK biphasic system, Nb-P/SBA-15 exhibits higher catalytic activity and selectivity to 5-HMF. By reaction at 160℃ for 1.5 h, with a water/MIBK volume ratio of 1/2, the conversion of fructose and the yield of 5-HMF reach 96.1% and 92.6%, respectively. Moreover, the Nb-P/SBA-15 catalyst also exhibits excellent stability in view of water tolerance; it still demonstrates high catalytic activity and selectivity to 5-HMF even after successive recycling for four times.
  • 加载中
    1. [1]

      LIN Mu-sen, JIANG Jian-chun. A review on fast pyrolysis of biomass[J]. Biomass Chem Eng, 2006,40(1):21-26.  

    2. [2]

      RUSSO P A, ANTUNES M A, NEVES P, WIPER P V, FAZIO E, NERI F, BARRECA F, MAFRA L, PILLINGER M, PINNA N, VALENTE A A. Mesoporous carbon-silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries[J]. Green Chem, 2014,16(9):4292-4305. doi: 10.1039/C4GC01037J

    3. [3]

      OSATIASHTIANI A, LEE A F, GRANOLLERS M, BROWN D R, OLIVI L, MORALES G, MELERO J A, WILSON K. Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF[J]. ACS Catal, 2015,5(7):4345-4352. doi: 10.1021/acscatal.5b00965

    4. [4]

      CHOUDHARY V, MUSHRIF S H, HO C, ANDERKO A, NIKOLAKIS V, MARINKOVIC N S, FRENKEL A I, SANDLER S I, VLACHOS D G. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J]. J Amer Chem Soc, 2013,135(10):3997-4006. doi: 10.1021/ja3122763

    5. [5]

      TAKEUCHI Y, JIN F, TOHJI K, ENOMOTO H. Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances[J]. J Mate Sci, 2007,43(7):2472-2475.  

    6. [6]

      SOUZA R L D, YU H, RATABOUL F, ESSAYEM N. 5-hydroxymethylfurfural (5-HMF) production from hexoses:Limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system[J]. Challenges, 2012,3(2):212-232. doi: 10.3390/challe3020212

    7. [7]

      MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, MAIRELES-TORRES P. Brønsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Chem Eng J, 2016,303:22-30. doi: 10.1016/j.cej.2016.05.120

    8. [8]

      SARAVANAMURUGAN S, PANIAGUA M, MELERO JA, RⅡSAGER A. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media[J]. J Am Chem Soc, 2013,135(14):5246-5249. doi: 10.1021/ja400097f

    9. [9]

      CUI M, HUANG R, QI W, SU R, HE Z. Cascade catalysis via dehydration and oxidation:One-pot synthesis of 2, 5-diformylfuran from fructose using acid and V2O5/ceramic catalysts[J]. RSC Adv, 2017,7(13):7560-7566. doi: 10.1039/C6RA27678D

    10. [10]

      JIMÉNEZ-MORALES I, MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, MAIRELES-TORRES P, JIMÉNEZ-LÓPEZ A. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Appl Catal B:Environ, 2014,154-155:190-196. doi: 10.1016/j.apcatb.2014.02.024

    11. [11]

      XUE Z, MA MG, LI Z, MU T. Advances in conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts[J]. RSC Adv, 2016,6:98874-98892. doi: 10.1039/C6RA20547J

    12. [12]

      XIAO Y, SONG Y F. Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride[J]. Appl Catal A:Gen, 2014,484:74-78. doi: 10.1016/j.apcata.2014.07.014

    13. [13]

      LI Y, LIU H, SONG C, GU X, LI H, ZHU W, YIN S, HAN C. The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid[J]. Bioresour Technol, 2013,133:347-353. doi: 10.1016/j.biortech.2013.01.038

    14. [14]

      SAMPATH G, KANNAN S. Fructose dehydration to 5-hydroxymethylfurfural:Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies[J]. Catal Commun, 2013,37:41-44. doi: 10.1016/j.catcom.2013.03.021

    15. [15]

      NAKAJIMA K, BABA Y, NOMA R, KITANO M, KONDO J N, HAYASHI S, HARA M. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites[J]. J Am Chem Soc, 2011,133(12):4224-4227. doi: 10.1021/ja110482r

    16. [16]

      MAURER S M, KO E I. ChemInform abstract:Structural and acidic characterization of niobia aerogels[J]. ChemInform, 1992,135(30):125-134.  

    17. [17]

      RAMANATHAN A, ZHU H, MAHESWARI R, THAPA P S, SUBRAMANIAM B. Comparative study of Nb-incorporated cubic mesoporous silicates as epoxidation catalysts[J]. Ind Eng Chem Res, 2015,54(16):4236-4242. doi: 10.1021/ie504386g

    18. [18]

      YANG Z J, LI Y F, WU Q B, REN N, ZHANG Y H, LIU Z P, TANG Y. Layered niobic acid with self-exfoliatable nanosheets and adjustable acidity for catalytic hydration of ethylene oxide[J]. J Catal, 2011,280(2):247-254. doi: 10.1016/j.jcat.2011.03.026

    19. [19]

      TURCO R, ARONNE A, CARNITI P, GERVASINI A, MINIERI L, PERNICE P, TESSER R, VITIELLO R, DI SERIO M. Influence of preparation methods and structure of niobium oxide-based catalysts in the epoxidation reaction[J]. Catal Today, 2015,254:99-103. doi: 10.1016/j.cattod.2014.11.033

    20. [20]

      SRILATHA K, LINGAIAH N, DEVI BLAP, PRASAD RBN, VENKATESWAR S, PRASAD PSS. Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts[J]. Appl Catal A:Gen, 2009,365(1):28-33. doi: 10.1016/j.apcata.2009.05.025

    21. [21]

      DE LA CRUZ M H C, ABDEL-REHIM M A, ROCHA A S, DA SILVA J F C, DA COSTA FARO JR A, LACHTER E R. Liquid phase alkylation of anisole by benzyl alcohol catalyzed on alumina-supported niobia[J]. Catal Commun, 2007,8(11):1650-1654. doi: 10.1016/j.catcom.2007.01.019

    22. [22]

      WANG F, WU H Z, LIU C L, YANG R Z, DONG W S. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J]. Carbohydr Res, 2013,368:78-83. doi: 10.1016/j.carres.2012.12.021

    23. [23]

      NGEE E L S, GAO Y, CHEN X, LEE T M, HU Z, ZHAO D, YAN N. Sulfated mesoporous niobium oxide catalyzed 5-hydroxymethylfurfural formation from sugars[J]. Ind Eng Chem Res, 2014,53(37):14225-14233. doi: 10.1021/ie501980t

    24. [24]

      GAO J L, GAO S, LIU C L, LIU Z T, DONG W S. Synthesis, characterization, and catalytic application of ordered mesoporous carbon-niobium oxide composites[J]. Mate Res Bull, 2014,59(16):131-136.  

    25. [25]

      GARCÍA-SANCHO C, AGIRREZABAL-TELLERIA I, GVEMEZ MB, MAIRELES-TORRES P. Dehydration of d-xylose to furfural using different supported niobia catalysts[J]. Appl Catal B:Environ, 2014,152-153:1-10. doi: 10.1016/j.apcatb.2014.01.013

    26. [26]

      ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548-552. doi: 10.1126/science.279.5350.548

    27. [27]

      LI Chun-jing, SHEN Jian, ZHANG Liang, WANG Chao. Catalytic synthesis of methyloleate by mesoporous sieve Nb2O5/SBA-15[J]. J Liaoning Univ Pet Chem Technol, 2008,28(4):9-15.  

    28. [28]

      ZHANG Y, WANG J, LI X, LIU X, XIA Y, HU B, LU G, WANG Y. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts[J]. Fuel, 2015,139:301-307. doi: 10.1016/j.fuel.2014.08.047

    29. [29]

      ORDOMSKY V V, SUSHKEVICH V L, SCHOUTEN J C, VAN DER SCHAAF J, NIJHUIS T A. Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts[J]. J Catal, 2013,300(3):37-46.  

    30. [30]

      HAFIZI H, NAJAFI CHERMAHINI A, SARAJI M, MOHAMMADNEZHAD G. The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica[J]. Chem Eng J, 2016,294:380-388. doi: 10.1016/j.cej.2016.02.082

    31. [31]

      KUO C H, POYRAZ A S, JIN L, MENG Y, PAHALAGEDARA L, CHEN S Y, KRIZ DA, GUILD C, GUDZ A, SUIB S L. Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates[J]. Green Chem, 2014,16(2):785-791. doi: 10.1039/c3gc40909k

    32. [32]

      LIU Yan-li, WANG Fu-yu, WANG Chong, ZHAO Zhen-bo. WO3/ZrO2 for fructose dehydration to 5-hydrocymethylfurfural as a solid acid catalyst[J]. Chem Int Eng Prog, 2014,33(1):105-109.  

    33. [33]

      WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. J Fuel Chem Technol, 2016,44(11):1341-1347. doi: 10.3969/j.issn.0253-2409.2016.11.010

  • 加载中
    1. [1]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    2. [2]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    3. [3]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    8. [8]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    9. [9]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    10. [10]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    11. [11]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    12. [12]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    13. [13]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    14. [14]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    15. [15]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    16. [16]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    17. [17]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    18. [18]

      Zhipeng LiQincong FengJianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602

    19. [19]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    20. [20]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

Metrics
  • PDF Downloads(14)
  • Abstract views(1447)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return