Citation: SONG Zhong-xian, DU Hui-xian, ZHAO Bao-lin, LIU Xue-ping, KANG Hai-yan, LIU Biao, MAO Yan-li, FU Yong-mei, LIU Pan, GUO Yi-fei. Study on the synergistic effect of CeO2 and WO3 on the catalytic performance of CeO2-WO3 for the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1129-1136. shu

Study on the synergistic effect of CeO2 and WO3 on the catalytic performance of CeO2-WO3 for the selective catalytic reduction of NOx by NH3

  • Corresponding author: GUO Yi-fei, 30020005@hncj.edu.cn
  • Received Date: 3 April 2019
    Revised Date: 12 July 2019

    Fund Project: The project was supported by the Doctoral Research Start-up Project of Henan University of Urban Construction (990/Q2017011)the Doctoral Research Start-up Project of Henan University of Urban Construction 990/Q2017011

Figures(6)

  • The CeO2, WO3 and CeO2-WO3 (donated as CW) catalysts were prepared by in-situ self-assembly method and used for the low-temperature selective catalytic reduction (SCR) of NOx with NH3. The results showed that CW catalysts possessed the most microspore and maximum pore volume and larger specific surface area with the addition of WO3, resulting in the improvement to the catalytic performance. Besides, the interaction of Ce and W was improved by the introduction of WO3, which could increase the amount of Ce3+ and Oα. Meanwhile, the enhancement of weak and medium strong acid sites was caused by the introduction of WO3. Thus, CW catalyst showed the best SCR activity and its NOx conversion at the value of 100% maintained in a wide temperature window ranging from 250 to 400 ℃.
  • 加载中
    1. [1]

      LIU J, LI X, ZHAO Q, HAO C, WANG S, TADÉ M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NOx[J]. ACS Catal, 2014,4(8):2426-2436. doi: 10.1021/cs5005739

    2. [2]

      GU Wei-rong, ZHOU Ming-ji, MA Wei, WANG Yu-li. Research progress on selective catalytic reduction De-NOx catalysts[J]. Chem Ind Eng Prog, 2012,31(7):1493-1500.  

    3. [3]

      MENG D, ZHAN W, GUO Y, WANG L, LU G. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:Promotional role of Sm and its catalytic performance[J]. ACS Catal, 2015,5(10):5973-5983. doi: 10.1021/acscatal.5b00747

    4. [4]

      SONG Z, YIN L, ZHANG Q, NING P, DUAN Y, JING W, XIN L, LONG K, HUANG Z. Relationship between the WO3 states and reaction pathway over CeO2-ZrO2-WO3 catalysts for selective catalytic reduction of NO with NH3[J]. Mol Catal, 2017,437:95-104. doi: 10.1016/j.mcat.2017.04.033

    5. [5]

      ZHANG Ya-ping, WANG Xiao-lei, SUN Ke-qin, SHEN Kai, XU Hai-tao, ZHOU Chang-cheng. WO3 modification on MnOx/TiO2 low-temperature De-NOx SCR catalyst[J]. J Fuel Chem Technol, 2011,39(10):782-786. doi: 10.3969/j.issn.0253-2409.2011.10.011

    6. [6]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2012,115/116(5):100-106.  

    7. [7]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Commun, 2011,47(28):8046-8048. doi: 10.1039/c1cc12168e

    8. [8]

      PENG Y, LI J H, CHEN L, CHEN J H, HAN J, ZHANG H, HAN W. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3:An experimental and theoretical study[J]. Environ Sci Technol, 2012,46(5):2864-2869. doi: 10.1021/es203619w

    9. [9]

      XU H D, ZHANG Q L, QIU C T, LIN T, GONG M C, CHEN Y Q. Tungsten modified MnOx-CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia[J]. Chem Eng Sci, 2012,76:120-128. doi: 10.1016/j.ces.2012.04.012

    10. [10]

      XU H D, WANG Y, CAO Y, FANG Z T, LIN T, GONG M C, CHEN Y Q. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3[J]. Chem Eng J, 2014,240:62-73. doi: 10.1016/j.cej.2013.11.053

    11. [11]

      XU H D, LI Y S, XU B Q, CAO Y, FENG X, SUN M M, GONG M C, CHEN Y Q. Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR[J]. J Ind Eng Chem, 2016,36:334-345. doi: 10.1016/j.jiec.2016.02.024

    12. [12]

      CHEN L, LI J, GE M, ZHU R. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia[J]. Catal Today, 2010,153(3/4):77-83.  

    13. [13]

      LIU Z, LIU Y, LI Y, SU H, MA L. WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Eng J, 2016,283:1044-1050. doi: 10.1016/j.cej.2015.08.040

    14. [14]

      WANG X, LI X, ZHAO Q, SUN W, TADE M, LIU S. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002

    15. [15]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2012,115/116:100-106. doi: 10.1016/j.apcatb.2011.12.019

    16. [16]

      ZHANG S, ZHONG Q, SHEN Y, ZHU L, DING J. New insight into the promoting role of process on the CeO2-WO3/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. J Colloid Interf Sci, 2015,448:417-426. doi: 10.1016/j.jcis.2015.02.038

    17. [17]

      LIU F, HE H, LIAN Z, SHAN W, XIE L, ASAKURA K, YANG W, DENG H. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3[J]. J Catal, 2013,307:340-351. doi: 10.1016/j.jcat.2013.08.003

    18. [18]

      LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010,114(40):16929-16936. doi: 10.1021/jp912163k

    19. [19]

      SONG Z X, ZHANG Q L, NING P, FAN J, DUAN Y K, LIU X, HUANG Z Z. Effect of CeO2 support on the selective catalytic reduction of NO with NH3 over P-W/CeO2[J]. J Taiwan Inst Chem Eng, 2016,65:149-161. doi: 10.1016/j.jtice.2016.04.034

    20. [20]

      THOMMES M, KANEKO K, NEIMARK A V, JAMES P O, FRANCISCO R, JEAN R, KENNETH S W S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2015,87(9/10):1051-1069.  

    21. [21]

      LEE K J, MAQBOOL M S, KUMAR P A, SONG K H, HA H P. Enhanced activity of ceria loaded Sb-V2O5/TiO2 catalysts for NO reduction with ammonia[J]. Catal Lett, 2013,143(10):988-995. doi: 10.1007/s10562-013-1035-1

    22. [22]

      CHANG H Z, LI J H, YUAN J, CHEN L, DAI Y, ARANDIYAN H, XU J Y, HAO J M. Ge, Mn-doped CeO2-WO3 catalysts for NH3-SCR of NOx:Effect of SO2 and H2 regeneration[J]. Catal Today, 2013,201:139-144. doi: 10.1016/j.cattod.2012.03.027

    23. [23]

      FANG C, ZHANG D S, SHI L Y, GAO R H, LI H R, YE L P, ZHANG J P. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catal Sci Technol, 2013,3:803-811. doi: 10.1039/C2CY20670F

    24. [24]

      JING L Q, XU Z L, SUN X J, SHANG J, CAI W M. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Appl Sur Sci, 2001,180(3/4):308-314.  

    25. [25]

      QI K, XIE J L, FANG D, LIU X Q, GONG P J, LI F X, HAN D, HE F. Mn5O8 nanoflowers prepared via a solvothermal route as efficient denitration catalysts[J]. Mater Chem Phys, 2018,209:10-15. doi: 10.1016/j.matchemphys.2018.01.029

    26. [26]

      CHEN L, SI Z C, WU X D, WENG D. DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures[J]. ACS Appl Mater Inter, 2014,6(11):8134-8145. doi: 10.1021/am5004969

    27. [27]

      SUTRADHAR N, SINHAMAHAPATRA A, PAHARI S, JAYACHANDRAN M, SUBRAMANIAN B, BAJAJ H C, PANADA A B. Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene[J]. J Phys Chem C, 2011,115(5):7628-7637.  

    28. [28]

      LIU Z M, ZHANG S X, LI J H, MA L L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B:Environ, 2014,144:90-95. doi: 10.1016/j.apcatb.2013.06.036

    29. [29]

      LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2009,93(1):3760-3769.  

    30. [30]

      PUTLURU S S R, SCHILL L, GODIKSEN A, POREDDY R, MOSSIN S, JENSEN A D, RASMUS F. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 2016,183:282-290. doi: 10.1016/j.apcatb.2015.10.044

    31. [31]

      MURUGAN B, RAMASWAMY A V. Chemical states and redox properties of Mn/CeO2-TiO2 nanocomposites prepared by solution combustion route[J]. J Phy Chem C, 2008,112(51):20429-20442. doi: 10.1021/jp806316x

    32. [32]

      DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A:Gen, 2002,234(1/2):271-282.  

    33. [33]

      SONG Zhong-xian, ZHANG Qiu-lin, ZHANG Jin-hui, NING Ping, LI Hao, WANG Yan-cai, WANG Ming-zhi, DUAN Yan-kang. Effect of WO3 content on the catalytic activity of CeO2-ZrO2-WO3 for selective catalytic reduction of NO with NH3[J]. J Fuel Chem Technol, 2015,43(6):701-707. doi: 10.3969/j.issn.0253-2409.2015.06.009

    34. [34]

      GUO Jia-xiu, YUAN Shu-hua, GONG Mao-chu, ZHANG Lei, WU Dong-dong, ZHAO Ming, CHEN Yao-qiang. Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts[J]. Acta Phys-Chim Sin, 2007,23(1):73-78.  

    35. [35]

      LIN Tao, LI Wei, GONG Mao-chu, YU Yao, DU Bo, CHEN Yao-qiang. Prepareration of ZrO2-TiO2-CeO2 and its application in the selective catalytic reduction of NO with NH3[J]. Acta Phys-Chim Sin, 2007,23(12):1851-1856.  

    36. [36]

      LIU F, HE H, DING Y, ZHANG C. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2009,93(1/2):194-204.  

    37. [37]

      ZHANG X J, WANG J K, SONG Z X, ZHAO H, XING Y, ZHAO M, ZHAO J G, MA Z A, ZHANG P P, TSUBAKI N. Promotion of surface acidity and surface species of doped Fe and SO42- over CeO2 catalytic for NH3-SCR reaction[J]. Mol Catal, 2019,463:1-7. doi: 10.1016/j.mcat.2018.11.002

    38. [38]

      SONG Z X, NING P, ZHANG Q L, LIU X, ZHANG J H, WANG Y C, DUAN Y K, HUANG Z Z. The role of surface properties of silicotungstic acid doped CeO2 for selective catalytic reduction of NOx by NH3:Effect of precipitant[J]. J Mol Catal A:Chem, 2016,413:15-23. doi: 10.1016/j.molcata.2015.12.009

    39. [39]

      LIU X W, ZHOU K B, WANG L, WANG B Y, LI Y D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc, 2009,131(9):3140-3141. doi: 10.1021/ja808433d

    40. [40]

      LIU L J, YU Q, ZHU J, WAN H Q, SUN K Q, LIU B, ZHU H Y, GAO F, DONG L, CHEN Y. Effect of MnOx modification on the activity and adsorption of CuO/Ce0.67Zr0.33O2 catalyst for NO reduction[J]. J Colloid Interf Sci, 2010,349(1):246-255. doi: 10.1016/j.jcis.2010.05.044

    41. [41]

      LIU C X, CHEN L, CHANG H Z, MA L, PENG Y, ARANDIYAN H, LI J H. Characterization of CeO2-WO3 catalysts prepared by different methods for selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2013,40:145-148. doi: 10.1016/j.catcom.2013.06.017

    42. [42]

      CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010,44(24):9590-9596. doi: 10.1021/es102692b

    43. [43]

      CHANG H, CHEN X, LI J, MA L, WANG C, LIU C, SCHWANK J W, HAO J. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures[J]. Environ Sci Technol, 2013,47(10):5294-5301. doi: 10.1021/es304732h

    44. [44]

      QI G S, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003,217(2):434-441.  

  • 加载中
    1. [1]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    2. [2]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    19. [19]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    20. [20]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(5)
  • Abstract views(1028)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return