Citation: ZHANG Ke-zhuo, YU Ya-qian, TANG Rui, ZHENG Yu-qi, GAO Jia-jun, JIANG Xing-mao. Adsorption performance of polyvinylpyrrolidone for phenols in oil[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1305-1312. shu

Adsorption performance of polyvinylpyrrolidone for phenols in oil

  • Corresponding author: GAO Jia-jun, gaojiajun@wit.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 11 September 2019

    Fund Project: the Scientific Research Foundation of Wuhan Institute of Technology 17QD62The project was supported by Hubei Provincial Department of Education Science and Technology Research Project (Q20181504) and the Scientific Research Foundation of Wuhan Institute of Technology (17QD62)Hubei Provincial Department of Education Science and Technology Research Project Q20181504

Figures(10)

  • Effective separation of phenols in coal tar is essential for enhancing its application value. In this work, polyvinylpyrrolidone (PVP) was used as a sorbent in the separation of phenols in model oils; the adsorption performance of PVP towards o-cresol, m-cresol, p-cresol, 1-naphthol, and 2-naphthol was then comparatively investigated. The results indicate that PVP possesses high adsorption capacity towards the phenols; the maximum adsorbance of PVP towards m-cresol, p-cresol, 1-naphthol, and 2-naphthol is higher than 1000 mg/g. For the adsorption of phenols on PVP, H-bonds are formed between the Lewis basic sites (C=O and N) of PVP and the phenolic -OH group and the H-bonding intensity is influenced by the steric hindrance of phenols. Furthermore, PVP shows high adsorption selectivity; 2-naphthol can be adsorbed effectively on PVP even in the presence of benzofuran or quinoline. Moreover, PVP can be regenerated for recycling where phenols are recovered as well. As a result, PVP is a promising sorbent for the separation of phenols from the coal tar oil.
  • 加载中
    1. [1]

      YAO C F, HOU Y C, REN S H, WU W Z, JI Y A, LIU H. Sulfonate based zwitterions:A new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents[J]. Fuel Process Technol, 2018,178:206-212. doi: 10.1016/j.fuproc.2018.05.031

    2. [2]

      JIAO T T, GONG M M, ZHUANG X L, LI C S, ZHANG S J. A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation[J]. J Ind Eng Chem, 2015,29:344-348. doi: 10.1016/j.jiec.2015.04.013

    3. [3]

      PANG K, HOU Y C, WU W Z, GUO W J, PENG W, MASH N. Kenneth efficient separation of phenols from oils via forming deep eutectic solvents[J]. Green Chem, 2012,14(9):2398-2401. doi: 10.1039/c2gc35400d

    4. [4]

      LIU Zhen-zhen, LUO Zhong-yang, MA Shuai, FANG Meng-xiang. Influence of phenolics on hydrodenitrogenation, hydrodesulfurization and hyrodearomatization of coal tar components[J]. J Fuel Chem Technol, 2015,43(11):1327-1333. doi: 10.3969/j.issn.0253-2409.2015.11.007 

    5. [5]

      JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction[J]. Fuel, 2019,239:926-934. doi: 10.1016/j.fuel.2018.11.007

    6. [6]

      ZAHOOR M, MAHRAMANLIOGLU M. Removal of phenolic substances from water by adsorption and adsorption-ultrafiltration[J]. Sep Sci Technol, 2011,46(9):1482-1494. doi: 10.1080/01496395.2011.561269

    7. [7]

      SCHHBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002,81(1):15-32. doi: 10.1016/S0016-2361(00)00203-9

    8. [8]

      GAO J J, DAI Y F, MA W Y, XU H H, LI C X. Efficient separation of phenol from oil by acid-base complexing adsorption[J]. Chem Eng J, 2015,281:749-758. doi: 10.1016/j.cej.2015.06.099

    9. [9]

      PATEL R N, BANDYOPADHYAY S, GANESH A. Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction[J]. Energy, 2011,36(3):1535-1542. doi: 10.1016/j.energy.2011.01.009

    10. [10]

      BHADRA B N, AHMED I, JHUNG S H. Remarkable adsorbent for phenol removal from fuel:Functionalized metal-organic framework[J]. Fuel, 2016,174:43-48. doi: 10.1016/j.fuel.2016.01.071

    11. [11]

      MENG H, GE C T, REN N N, MA W Y, LU Y Z, LI C X. Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof[J]. Ind Eng Chem Res, 2013,53(1):355-362.  

    12. [12]

      YAO C F, HOU Y C, REN S H, WU W Z, ZHANG K, JI Y A, LIU H. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chem Eng J, 2017,326:620-626. doi: 10.1016/j.cej.2017.06.007

    13. [13]

      LIN K L, PAN J Y, CHEN Y W, CHENG R M, XU X C. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders[J]. J Hazard Mater, 2009,161(1):231-40. doi: 10.1016/j.jhazmat.2008.03.076

    14. [14]

      SUN Shuang, LI Wei-kang, ZHANG Juan, ZHAO Di-shun. Research progress on application of polymeric ionic liquids in adsorption separation[J]. Mod Chem Ind, 2017,37(6):38-42.  

    15. [15]

      ARCHANA V, MEERA S, BEGUM K M, ANANTHARAMAN N. Studies on removal of phenol using ionic liquid immobilized polymeric micro-capsules[J]. Arabian J Chem, 2016,9(3):371-382. doi: 10.1016/j.arabjc.2013.03.017

    16. [16]

      XIE K, SHAN C H, QI J S, QIAO S, ZENG Q S, ZHANG L Y. Study of adsorptive removal of phenol by MOF-5[J]. Desalin Water Treat, 2014,54(3):654-659.  

    17. [17]

      KOCZKUR M K, STAFANOS M, LAKSHMINARAYANA P, SARA E S. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Trans, 2015,44(41):17883-17905. doi: 10.1039/C5DT02964C

    18. [18]

      AYNUR O A, TATIANA I N, IVA V V, MARK T C, TERRY W S, RAIPH K, GERRIT S. Multivariate discrimination between modes of toxic action of phenols[J]. Qsar Comb Sci, 2015,21(1):12-22.  

    19. [19]

      CHEN B L, CHEN Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere, 2009,76(1):123-133.  

    20. [20]

      ROSEN M J, LI F. The adsorption of gemini and conventional surfactants onto some soil solids and the removal of 2-naphthol by the soil surfaces[J]. J Colloid Interface Sci, 2001,234(2):418-424. doi: 10.1006/jcis.2000.7293

    21. [21]

      WANG Y, HOU Y C, WU W Z, LIU D D, JI Y A, REN S H. Roles of hydrogen bond donor and hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chem, 2016,10:3089-3097.  

    22. [22]

      HAN Peng-fei, ZHAO Hong, DONG Xu-feng, TAN Suo-kui, QI Min, JI Song. Effect of etching process on fast-epitaxial SiC thick films[J]. J Funct Mater, 2017,48(1):1135-1138.  

    23. [23]

      DUAN Z B, BU T T, BIAN H, ZHU L J, XIANG Y Z, XIA D D. Effective removal of phenylamine, quinoline and indol from light oil by β-cyclodextrin aqueous solution through molecular inclusion[J]. Energy Fuels, 2018,32(9):9280-9288. doi: 10.1021/acs.energyfuels.8b02086

    24. [24]

      GAN Wu-peng, WANG Hong-xin. Study on activated carbon adsorption to remove phenol from wastewater and regeneration of the adsorbent[J]. Liaoling Chem Ind, 1999,28(6):337-339.  

    25. [25]

      ZENG Q C, WU D C, ZHOU C, XU F, FU R W, LI Z H, LIANG Y R, SU D S. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chem Commun, 2010,46(32):5927-5929. doi: 10.1039/c0cc00449a

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    18. [18]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    19. [19]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(8)
  • Abstract views(1453)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return