Citation: ZHANG Ke-zhuo, YU Ya-qian, TANG Rui, ZHENG Yu-qi, GAO Jia-jun, JIANG Xing-mao. Adsorption performance of polyvinylpyrrolidone for phenols in oil[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1305-1312. shu

Adsorption performance of polyvinylpyrrolidone for phenols in oil

  • Corresponding author: GAO Jia-jun, gaojiajun@wit.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 11 September 2019

    Fund Project: the Scientific Research Foundation of Wuhan Institute of Technology 17QD62The project was supported by Hubei Provincial Department of Education Science and Technology Research Project (Q20181504) and the Scientific Research Foundation of Wuhan Institute of Technology (17QD62)Hubei Provincial Department of Education Science and Technology Research Project Q20181504

Figures(10)

  • Effective separation of phenols in coal tar is essential for enhancing its application value. In this work, polyvinylpyrrolidone (PVP) was used as a sorbent in the separation of phenols in model oils; the adsorption performance of PVP towards o-cresol, m-cresol, p-cresol, 1-naphthol, and 2-naphthol was then comparatively investigated. The results indicate that PVP possesses high adsorption capacity towards the phenols; the maximum adsorbance of PVP towards m-cresol, p-cresol, 1-naphthol, and 2-naphthol is higher than 1000 mg/g. For the adsorption of phenols on PVP, H-bonds are formed between the Lewis basic sites (C=O and N) of PVP and the phenolic -OH group and the H-bonding intensity is influenced by the steric hindrance of phenols. Furthermore, PVP shows high adsorption selectivity; 2-naphthol can be adsorbed effectively on PVP even in the presence of benzofuran or quinoline. Moreover, PVP can be regenerated for recycling where phenols are recovered as well. As a result, PVP is a promising sorbent for the separation of phenols from the coal tar oil.
  • 加载中
    1. [1]

      YAO C F, HOU Y C, REN S H, WU W Z, JI Y A, LIU H. Sulfonate based zwitterions:A new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents[J]. Fuel Process Technol, 2018,178:206-212. doi: 10.1016/j.fuproc.2018.05.031

    2. [2]

      JIAO T T, GONG M M, ZHUANG X L, LI C S, ZHANG S J. A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation[J]. J Ind Eng Chem, 2015,29:344-348. doi: 10.1016/j.jiec.2015.04.013

    3. [3]

      PANG K, HOU Y C, WU W Z, GUO W J, PENG W, MASH N. Kenneth efficient separation of phenols from oils via forming deep eutectic solvents[J]. Green Chem, 2012,14(9):2398-2401. doi: 10.1039/c2gc35400d

    4. [4]

      LIU Zhen-zhen, LUO Zhong-yang, MA Shuai, FANG Meng-xiang. Influence of phenolics on hydrodenitrogenation, hydrodesulfurization and hyrodearomatization of coal tar components[J]. J Fuel Chem Technol, 2015,43(11):1327-1333. doi: 10.3969/j.issn.0253-2409.2015.11.007 

    5. [5]

      JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction[J]. Fuel, 2019,239:926-934. doi: 10.1016/j.fuel.2018.11.007

    6. [6]

      ZAHOOR M, MAHRAMANLIOGLU M. Removal of phenolic substances from water by adsorption and adsorption-ultrafiltration[J]. Sep Sci Technol, 2011,46(9):1482-1494. doi: 10.1080/01496395.2011.561269

    7. [7]

      SCHHBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002,81(1):15-32. doi: 10.1016/S0016-2361(00)00203-9

    8. [8]

      GAO J J, DAI Y F, MA W Y, XU H H, LI C X. Efficient separation of phenol from oil by acid-base complexing adsorption[J]. Chem Eng J, 2015,281:749-758. doi: 10.1016/j.cej.2015.06.099

    9. [9]

      PATEL R N, BANDYOPADHYAY S, GANESH A. Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction[J]. Energy, 2011,36(3):1535-1542. doi: 10.1016/j.energy.2011.01.009

    10. [10]

      BHADRA B N, AHMED I, JHUNG S H. Remarkable adsorbent for phenol removal from fuel:Functionalized metal-organic framework[J]. Fuel, 2016,174:43-48. doi: 10.1016/j.fuel.2016.01.071

    11. [11]

      MENG H, GE C T, REN N N, MA W Y, LU Y Z, LI C X. Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof[J]. Ind Eng Chem Res, 2013,53(1):355-362.  

    12. [12]

      YAO C F, HOU Y C, REN S H, WU W Z, ZHANG K, JI Y A, LIU H. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chem Eng J, 2017,326:620-626. doi: 10.1016/j.cej.2017.06.007

    13. [13]

      LIN K L, PAN J Y, CHEN Y W, CHENG R M, XU X C. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders[J]. J Hazard Mater, 2009,161(1):231-40. doi: 10.1016/j.jhazmat.2008.03.076

    14. [14]

      SUN Shuang, LI Wei-kang, ZHANG Juan, ZHAO Di-shun. Research progress on application of polymeric ionic liquids in adsorption separation[J]. Mod Chem Ind, 2017,37(6):38-42.  

    15. [15]

      ARCHANA V, MEERA S, BEGUM K M, ANANTHARAMAN N. Studies on removal of phenol using ionic liquid immobilized polymeric micro-capsules[J]. Arabian J Chem, 2016,9(3):371-382. doi: 10.1016/j.arabjc.2013.03.017

    16. [16]

      XIE K, SHAN C H, QI J S, QIAO S, ZENG Q S, ZHANG L Y. Study of adsorptive removal of phenol by MOF-5[J]. Desalin Water Treat, 2014,54(3):654-659.  

    17. [17]

      KOCZKUR M K, STAFANOS M, LAKSHMINARAYANA P, SARA E S. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Trans, 2015,44(41):17883-17905. doi: 10.1039/C5DT02964C

    18. [18]

      AYNUR O A, TATIANA I N, IVA V V, MARK T C, TERRY W S, RAIPH K, GERRIT S. Multivariate discrimination between modes of toxic action of phenols[J]. Qsar Comb Sci, 2015,21(1):12-22.  

    19. [19]

      CHEN B L, CHEN Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere, 2009,76(1):123-133.  

    20. [20]

      ROSEN M J, LI F. The adsorption of gemini and conventional surfactants onto some soil solids and the removal of 2-naphthol by the soil surfaces[J]. J Colloid Interface Sci, 2001,234(2):418-424. doi: 10.1006/jcis.2000.7293

    21. [21]

      WANG Y, HOU Y C, WU W Z, LIU D D, JI Y A, REN S H. Roles of hydrogen bond donor and hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chem, 2016,10:3089-3097.  

    22. [22]

      HAN Peng-fei, ZHAO Hong, DONG Xu-feng, TAN Suo-kui, QI Min, JI Song. Effect of etching process on fast-epitaxial SiC thick films[J]. J Funct Mater, 2017,48(1):1135-1138.  

    23. [23]

      DUAN Z B, BU T T, BIAN H, ZHU L J, XIANG Y Z, XIA D D. Effective removal of phenylamine, quinoline and indol from light oil by β-cyclodextrin aqueous solution through molecular inclusion[J]. Energy Fuels, 2018,32(9):9280-9288. doi: 10.1021/acs.energyfuels.8b02086

    24. [24]

      GAN Wu-peng, WANG Hong-xin. Study on activated carbon adsorption to remove phenol from wastewater and regeneration of the adsorbent[J]. Liaoling Chem Ind, 1999,28(6):337-339.  

    25. [25]

      ZENG Q C, WU D C, ZHOU C, XU F, FU R W, LI Z H, LIANG Y R, SU D S. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chem Commun, 2010,46(32):5927-5929. doi: 10.1039/c0cc00449a

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(8)
  • Abstract views(1390)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return