Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation
- Corresponding author: ZHANG Cheng-hua, zhangchh@sxicc.ac.cn
Citation:
LI Ning, MA Cai-ping, ZHANG Cheng-hua, YANG Yong, LI Yong-wang. Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(4): 428-437.
DUDLEY B. BP Statistical Review of World Energy[Z]. http://www.bp.com/papercopies. 2018-6.
DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002,71(3):227-241.
VAN DER LAAN G P, BEENACKERS A A C M. Kinetics and selectivity of the Fischer-Tropsch synthesis:A literature review[J]. Catal Rev, 1999,41(3/4):255-318.
ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem, 2013,22(1):27-38. doi: 10.1016/S2095-4956(13)60003-0
DAVIS B H. Fischer-Tropsch synthesis:Comparison of performances of iron and cobalt catalysts[J]. Chem Eng Prog, 2007,46(26):8938-8945.
YU Z X, BORG Y, CHEN D, ENGER C B, FRØSETH V, RYTTER E, WIGUM H, HOLMEN A. Carbon nanofiber supported cobalt catalysts for Fischer-Tropsch synthesis with high activity and selectivity[J]. Catal Lett, 2006,109(1/2):43-47.
GIRARDON J S, QUINET E, GRIBOVAL-CONSTAANT A, CHERNAVSKⅡ P A, GENGEMBRE L, KHODAKOV A Y. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts[J]. J Catal, 2007,248(2):143-157. doi: 10.1016/j.jcat.2007.03.002
BERGE P J V, LOOSDRECHT J V D, BARRADAS S. Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism[J]. Catal Today, 2000,58(4):321-334. doi: 10.1016/S0920-5861(00)00265-0
RYTTER E, HOLMEN A. Deactivation and regeneration of commercial type Fischer-Tropsch Co-catalysts-A mini-review[J]. Catalysts, 2015,5(2):478-499. doi: 10.3390/catal5020478
TAVASOLI A, KARIMI S, TAGHAVI S, ZOLFAGHARI Z, AMIRFIROUZKOUHI H. Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2012,21(5):605-613. doi: 10.1016/S1003-9953(11)60409-X
LOOSDRECHT J V D, BALZHINIMAEV B, DALMON J A, NIEMANTSVERDRIET J W, TSYBULYA S V, SAIB A M, BERGE P J V, VISAGIE J L. Cobalt Fischer-Tropsch synthesis:Deactivation by oxidation?[J]. Catal Today, 2007,123(1/4):293-302.
TAVASOLI A, TRÉPANIER M, DALAI A K, ABATZOGLOU N. Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer-Tropsch Co/carbon nanotube catalysts[J]. J Chem Eng Data, 2010,55(8):2757-2763. doi: 10.1021/je900984c
TRÉPANIER M, DALAI A K, ABATZOGLOU N. Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique:Role of nanoparticle size on reducibility, activity and selectivity in Fischer-Tropsch reactions[J]. Appl Catal A:Gen, 2010,374(1/2):79-86.
CHAIKITTISILP W, ARIGA K, YAMAUCHI Y. A new family of carbon materials:Synthesis of MOF-derived nanoporous carbons and their promising applications[J]. J Mater Chem A, 2013,1(1):14-19.
DONG W H, ZHANG L, WANG C H, CHENG F, SHANG N Z, GAO S T, WANG C. Palladium nanoparticles embedded in metal-organic framework derived porous carbon:Synthesis and application for efficient Suzuki-Miyaura coupling reactions[J]. RSC Adv, 2016,6(43):37118-37123. doi: 10.1039/C6RA00378H
EI Y P, LI Z, LI Y W. Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE J, 2017,63(7):2935-2944. doi: 10.1002/aic.15677
QIU B, YANG C, GUO W H, XU Y, LIANG Z B, MA D, ZOU R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. J Mater Chem A, 2017,5(17):8081-8086. doi: 10.1039/C7TA02128C
SUN X H, OLIVOS-SUAREZ A I, OAR-ARTETA L, ROZHKO E, OSADCHⅡ D, BAVYKINA A, KAPTEIJN F, GASCON J. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes[J]. Chem Cat Chem, 2017,9(10):1854-1862.
XIA W, MAHMOOD A, ZOU R Q, XU Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy Environ Sci, 2015,8(7):1837-1866. doi: 10.1039/C5EE00762C
ZHANG C H, GUO X X, YUAN Q C, ZHANG R L, CHANG Q, LI K, XIAO B, LIU S Y, MA C P, LIU X, XU Y Q, WEN X D, YANG Y, LI Y W. Ethyne-reducing metal-organic frameworks to control fabrications of core/shell nanoparticles as catalysts[J]. ACS Catal, 2018,8(8):7120-7130. doi: 10.1021/acscatal.8b01691
CHO H S, DENG H X, MIYASAKA K, DONG Z Y, CHO M, NEIMARK A V, KANG J K, YAGHI O M, TERASAKI O. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks[J]. Nature, 2015,527(7579):503-7. doi: 10.1038/nature15734
LI H L, EDDAOUDI M, KEEFFE M O, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402(6759):276-279. doi: 10.1038/46248
SAMBANDAM B, SOUNDHARRAJAN V, MATHEW V, SONG J J, KIM S J, JO J, DUONG P T, KIM S, MATHEW V, KIM J. Metal-organic framework-combustion:A new, cost-effective and one-pot technique to a porous Co3V2O8 microspheres anode for high energy Lithium-ion batteries[J]. J Mater Chem A, 2016(4):14605-14613.
CENDROWSKI K, ZENDEROWSKA A, BIEGANSKA A, MIJOWSKA E. Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization[J]. Dalton T, 2017,46(24):7722-7732. doi: 10.1039/C7DT01048F
HE Yong-lin. Recycing and purifing terephthalic acid from wastewater of alkali deweighting finishing of polyester[D]. Wuxi: Jiangnan University, 2013.
XIE Gu-sheng. Utilization of terephthalic acid in waste liquor of alkali reduction processing[J]. Liaoning Tussah Silk, 2001(2):38-40. doi: 10.3969/j.issn.1671-3389.2001.02.014
SHENG Cong-cong. Based on MOFs to Co-hollow/core-shell@graphene composite materials: Preparation, characterization and properties[D]. Zhengzhou: Zhengzhou University, 2017.
WELLER S, HOFER L J E, ANDERSON R B. The role of bulk cobalt carbide in the Fischer-Tropsch synthesis[J]. J Am Chem Soc, 1948(2):799-801.
XIONG J M, DING Y J, WANG T, YAN L, CHEN W M, ZHU H J, LU Y. The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction[J]. Catal Lett, 2005,102(3/4):265-269.
ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786
ZHANG R G, WEN G X, ADIDHARMA H, RUSSELL A G, WANG B J, RADOSZ M, FAN M. C2 oxygenates synthesis via Fischer-Tropsch synthesis on Co2C and Co/Co2C interface catalysts:How to control the catalyst crystal facet for optimal selectivity[J]. ACS Catal, 2017,7(12):8285-8295. doi: 10.1021/acscatal.7b02800
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
((a)other synthesis condition: 70 ℃, H2BDC :Co = 2), synthesis mixture compositions ((b)other synthesis condition: 70 ℃, pH = 6), and temperatures ((c)other synthesis condition: pH = 6, H2BDC :Co =2)
▲ : fcc Co; ■ : hcp Co
— ▲ —: Co@C-Ar; — ● —: Co@C-C2H2