Citation: LI Ning, MA Cai-ping, ZHANG Cheng-hua, YANG Yong, LI Yong-wang. Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 428-437. shu

Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation

  • Corresponding author: ZHANG Cheng-hua, zhangchh@sxicc.ac.cn
  • Received Date: 21 December 2018
    Revised Date: 26 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (91545109)the National Natural Science Foundation of China 91545109

Figures(13)

  • With terephthalic acid (H2BDC) as ligand and cobalt acetate as Co source, metal-organic frameworks (Co-BDC MOFs) were synthesized in water by co-precipitation; after that, core-shell Co@C catalysts were prepared by chemical vapor deposition (CVD) of Co-BDC MOFs in acetylene and Ar atmosphere. The structure, composition and properties of Co@C catalysts were characterized by XRD, nitrogen physisorption, SEM, TEM, XPS, TGA and Raman spectroscopy and their catalytic performance in Fischer-Tropsch synthesis (FTS) were investigated in a fixed-bed tubular reactor. The results demonstrated that the carbonization atmosphere has an important influence on the graphitization degree of carbon shell, whereas has little effect on the phase and size of Co core. The pore of graphite shell is significantly improved by CVD in acetylene, which can enhance the selectivity to heavier hydrocarbons (C5+) for CO hydrogenation; in particular, the Co@C-C2H2 catalyst shows a high selectivity of 82.66% to the C5+ hydrocarbons. As the carbon shell can effectively inhibit the cobalt nanoparticles from migration and agglomeration during the FTS reaction, the Co species were well distributed in both the fresh and spent catalysts and no significant sintering and deactivation are observed for the Co@C catalysts upon the FTS tests. During the FTS reaction, the active phase changes from metallic Co to a mixture of metallic Co and Co2C, whilst the catalytic activity of Co@C-C2H2 keeps almost unchanged, suggesting that Co2C may also be an active phase for the Fischer-Tropsch synthesis.
  • 加载中
    1. [1]

      DUDLEY B. BP Statistical Review of World Energy[Z]. http://www.bp.com/papercopies. 2018-6.

    2. [2]

      DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002,71(3):227-241.  

    3. [3]

      VAN DER LAAN G P, BEENACKERS A A C M. Kinetics and selectivity of the Fischer-Tropsch synthesis:A literature review[J]. Catal Rev, 1999,41(3/4):255-318.  

    4. [4]

      ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem, 2013,22(1):27-38. doi: 10.1016/S2095-4956(13)60003-0

    5. [5]

      DAVIS B H. Fischer-Tropsch synthesis:Comparison of performances of iron and cobalt catalysts[J]. Chem Eng Prog, 2007,46(26):8938-8945.  

    6. [6]

      YU Z X, BORG Y, CHEN D, ENGER C B, FRØSETH V, RYTTER E, WIGUM H, HOLMEN A. Carbon nanofiber supported cobalt catalysts for Fischer-Tropsch synthesis with high activity and selectivity[J]. Catal Lett, 2006,109(1/2):43-47.  

    7. [7]

      GIRARDON J S, QUINET E, GRIBOVAL-CONSTAANT A, CHERNAVSKⅡ P A, GENGEMBRE L, KHODAKOV A Y. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts[J]. J Catal, 2007,248(2):143-157. doi: 10.1016/j.jcat.2007.03.002

    8. [8]

      BERGE P J V, LOOSDRECHT J V D, BARRADAS S. Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism[J]. Catal Today, 2000,58(4):321-334. doi: 10.1016/S0920-5861(00)00265-0

    9. [9]

      RYTTER E, HOLMEN A. Deactivation and regeneration of commercial type Fischer-Tropsch Co-catalysts-A mini-review[J]. Catalysts, 2015,5(2):478-499. doi: 10.3390/catal5020478

    10. [10]

      TAVASOLI A, KARIMI S, TAGHAVI S, ZOLFAGHARI Z, AMIRFIROUZKOUHI H. Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2012,21(5):605-613. doi: 10.1016/S1003-9953(11)60409-X

    11. [11]

      LOOSDRECHT J V D, BALZHINIMAEV B, DALMON J A, NIEMANTSVERDRIET J W, TSYBULYA S V, SAIB A M, BERGE P J V, VISAGIE J L. Cobalt Fischer-Tropsch synthesis:Deactivation by oxidation?[J]. Catal Today, 2007,123(1/4):293-302.  

    12. [12]

      TAVASOLI A, TRÉPANIER M, DALAI A K, ABATZOGLOU N. Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer-Tropsch Co/carbon nanotube catalysts[J]. J Chem Eng Data, 2010,55(8):2757-2763. doi: 10.1021/je900984c

    13. [13]

      TRÉPANIER M, DALAI A K, ABATZOGLOU N. Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique:Role of nanoparticle size on reducibility, activity and selectivity in Fischer-Tropsch reactions[J]. Appl Catal A:Gen, 2010,374(1/2):79-86.  

    14. [14]

      CHAIKITTISILP W, ARIGA K, YAMAUCHI Y. A new family of carbon materials:Synthesis of MOF-derived nanoporous carbons and their promising applications[J]. J Mater Chem A, 2013,1(1):14-19.

    15. [15]

      DONG W H, ZHANG L, WANG C H, CHENG F, SHANG N Z, GAO S T, WANG C. Palladium nanoparticles embedded in metal-organic framework derived porous carbon:Synthesis and application for efficient Suzuki-Miyaura coupling reactions[J]. RSC Adv, 2016,6(43):37118-37123. doi: 10.1039/C6RA00378H

    16. [16]

      EI Y P, LI Z, LI Y W. Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE J, 2017,63(7):2935-2944. doi: 10.1002/aic.15677

    17. [17]

      QIU B, YANG C, GUO W H, XU Y, LIANG Z B, MA D, ZOU R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. J Mater Chem A, 2017,5(17):8081-8086. doi: 10.1039/C7TA02128C

    18. [18]

      SUN X H, OLIVOS-SUAREZ A I, OAR-ARTETA L, ROZHKO E, OSADCHⅡ D, BAVYKINA A, KAPTEIJN F, GASCON J. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes[J]. Chem Cat Chem, 2017,9(10):1854-1862.  

    19. [19]

      XIA W, MAHMOOD A, ZOU R Q, XU Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy Environ Sci, 2015,8(7):1837-1866. doi: 10.1039/C5EE00762C

    20. [20]

      ZHANG C H, GUO X X, YUAN Q C, ZHANG R L, CHANG Q, LI K, XIAO B, LIU S Y, MA C P, LIU X, XU Y Q, WEN X D, YANG Y, LI Y W. Ethyne-reducing metal-organic frameworks to control fabrications of core/shell nanoparticles as catalysts[J]. ACS Catal, 2018,8(8):7120-7130. doi: 10.1021/acscatal.8b01691

    21. [21]

      CHO H S, DENG H X, MIYASAKA K, DONG Z Y, CHO M, NEIMARK A V, KANG J K, YAGHI O M, TERASAKI O. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks[J]. Nature, 2015,527(7579):503-7. doi: 10.1038/nature15734

    22. [22]

      LI H L, EDDAOUDI M, KEEFFE M O, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402(6759):276-279. doi: 10.1038/46248

    23. [23]

      SAMBANDAM B, SOUNDHARRAJAN V, MATHEW V, SONG J J, KIM S J, JO J, DUONG P T, KIM S, MATHEW V, KIM J. Metal-organic framework-combustion:A new, cost-effective and one-pot technique to a porous Co3V2O8 microspheres anode for high energy Lithium-ion batteries[J]. J Mater Chem A, 2016(4):14605-14613.

    24. [24]

      CENDROWSKI K, ZENDEROWSKA A, BIEGANSKA A, MIJOWSKA E. Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization[J]. Dalton T, 2017,46(24):7722-7732. doi: 10.1039/C7DT01048F

    25. [25]

      HE Yong-lin. Recycing and purifing terephthalic acid from wastewater of alkali deweighting finishing of polyester[D]. Wuxi: Jiangnan University, 2013. 

    26. [26]

      XIE Gu-sheng. Utilization of terephthalic acid in waste liquor of alkali reduction processing[J]. Liaoning Tussah Silk, 2001(2):38-40. doi: 10.3969/j.issn.1671-3389.2001.02.014

    27. [27]

      SHENG Cong-cong. Based on MOFs to Co-hollow/core-shell@graphene composite materials: Preparation, characterization and properties[D]. Zhengzhou: Zhengzhou University, 2017. 

    28. [28]

      WELLER S, HOFER L J E, ANDERSON R B. The role of bulk cobalt carbide in the Fischer-Tropsch synthesis[J]. J Am Chem Soc, 1948(2):799-801.

    29. [29]

      XIONG J M, DING Y J, WANG T, YAN L, CHEN W M, ZHU H J, LU Y. The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction[J]. Catal Lett, 2005,102(3/4):265-269.  

    30. [30]

      ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786

    31. [31]

      ZHANG R G, WEN G X, ADIDHARMA H, RUSSELL A G, WANG B J, RADOSZ M, FAN M. C2 oxygenates synthesis via Fischer-Tropsch synthesis on Co2C and Co/Co2C interface catalysts:How to control the catalyst crystal facet for optimal selectivity[J]. ACS Catal, 2017,7(12):8285-8295. doi: 10.1021/acscatal.7b02800

  • 加载中
    1. [1]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(6)
  • Abstract views(1661)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return