Citation: CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1153-1163. shu

Calibration of solid state NMR carbon structural parameters and application in coal structure analysis

  • Corresponding author: ZHANG De-xiang, zdx@ecust.edu.cn
  • Received Date: 5 April 2017
    Revised Date: 20 June 2017

    Fund Project: the National Key Research and Development Program of China 2016YFB0600303The project was supported by the National Key Research and Development Program of China(2016YFB0600303)

Figures(5)

  • Carbon structure parameters were obtained accurately, if the NOE effect of carbon nucleus has been eliminated in13C CP/MAS/TOSS NMR test. This study has investigated different model compounds NOE effect intensity. And the results show that there is an obvious carbon structure error between the fitting test value and theoretical value in the different model compounds. The aliphatic carbon error is 25%-125%, and the aromatic carbon is 4%-50%, the NOE effect has great influence in solid state NMR. Therefore, the nonlinear regression equation was obtained by regression analysis of the measured and theoretical values of the model compound aliphatic and aromatic carbon. And this equation was used to calibrate the carbon structure of 9, 10-dimethylanthracene. It is found that after calibration the error between the measured value and the theoretical value of the modified aliphatic is reduced from 119.60% to 7.84%. The error of the aromatic carbon is reduced from -17.10% to 1.11%. And the error is within 10%. Then, the carbon structural parameters of different coal are calibrated by the regression equation. It is found that the H/C error of different coal is 45%-53% compared with elements analysis, and the calibration error is only 4%-13%, which is consistent with the results of elemental analysis. It indicated that the nonlinear regression equation could easily and precisely correct the solid state NMR carbon nuclear NOE effects and also provides new technical support for analysis of carbon structure in coal.
  • 加载中
    1. [1]

      YU Ji-shun. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2000.

    2. [2]

      ZHANG Peng-zhou, LI Li-yun, YE Chao-hui. Study of structural feature of coal by solid state13C NMR spectroscopy[J]. J Fuel Chem Technol, 1993,21(3):310-316.  

    3. [3]

      LIU Chuan-fu, SUN Run-cang, YE Jun. Application of CP/MAS13C-NMR Spectroscopy in the Study of Lignocellulosic Materials[J]. Trans China Pulp Pap, 2005,20(2):184-188.

    4. [4]

      MA Zhi-ru, ZHANG Peng-zhou, LI Li-yun. The progress of NMR techniques applied to coal chemistry[J]. Coal Convers, 1996,19(1):33-39.  

    5. [5]

      MICHAEL A W, RONALD J P. New solid state NMR techniques in coal analysis[J]. TrAC Trends Anal Chem, 1984,3(6):144-147. doi: 10.1016/0165-9936(84)88007-3

    6. [6]

      MARK S S, RONALD J P, DAVID M G. 13C Solid-state NMR of Argonne Premium Coals[J]. Energy Fuels, 1989,3(2):187-193. doi: 10.1021/ef00014a012

    7. [7]

      LI Zheng-guang. Carbon distribution of kerogen and it's relationship to hydrocarbon generation potential-application of13C NMR CP/MAS and DD techniques[J]. Geochimica, 1995,24(2):101-109.

    8. [8]

      CHEN Ming-xiu. The application of solid cross polarization magic angle spinning(CP/MAS) and dipole to nuclear magnetic resonance(NMR) spectroscopy to study coal[J]. Coal Anal Util, 1989,4(3):1-7.  

    9. [9]

      XIAO Y C, MARK A C, MARIA M, MAO J. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state13C NMR spectroscopy[J]. Int J Coal Geol, 2013,108:53-64. doi: 10.1016/j.coal.2012.05.002

    10. [10]

      MAO J, CAO X, NAN C O, KLAUS S. Advanced solid-state NMR spectroscopy of natural organic matter[J]. Prog Nucl Magn Reson Spectrosc, 2017,100:17-22. doi: 10.1016/j.pnmrs.2016.11.003

    11. [11]

      STACEY M A, KANMI M, GORDON J K, MAREK P. Solid-state NMR studies of fossil fuels using one-and two-dimensional methods at high magnetic field[J]. Energy Fuels, 2012,26(7):4405-4412. doi: 10.1021/ef3004637

    12. [12]

      CHENG H N, LYNDA H W, KLASSON K T, JOHN C E. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010,48(9):2455-2469. doi: 10.1016/j.carbon.2010.03.016

    13. [13]

      MICHAEL A W, ANTHONY M V. Developments in high-solid-state13C NMR spectroscopy of coals[J]. Org Geochem, 1985,8(5):299-312. doi: 10.1016/0146-6380(85)90009-9

    14. [14]

      JAMES A F, ROBERTO G, JOHN C L. Single-pulse excitation13C NMR measurements on the argonne premium coal samples[J]. Energy Fuels, 1992,6(5):598-602. doi: 10.1021/ef00035a009

    15. [15]

      ROBERT V L, DAVID C S, COLIN E S. Quantitative solid state13C NMR studies of highly cross-linked poly(divinylbenzene) resins[J]. Macromolecules, 1997,30(10):2868-2875. doi: 10.1021/ma9616470

    16. [16]

      ZHANG R, KAMAL H M. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy[J]. J Magn Reson, 2016,266:59-66. doi: 10.1016/j.jmr.2016.03.006

    17. [17]

      KOH K, SATORU M, MASAKASTSU N. Studies on the chemical structural change during carbonization process[J]. Energy Fuels, 1996,10(3):672-678. doi: 10.1021/ef9501096

    18. [18]

      WANG Li-ying, FENG Ji-wen, YE Chao-hui. Typical polymers studied by solid-state NMR[J]. Chin J Magn Reson, 2006,23(4):547-549.  

    19. [19]

      XU Da-jiang, SHU Jie. Application of high-resolution solid-state nuclear magnetic resonance techniques in chemical materials[J]. Anal Instrum, 2015,1:25-34. doi: 10.3969/j.issn.1001-232x.2015.01.005

    20. [20]

      PAN Tie-ying, ZHANG Yu-lan, SU Ke-man. Spectrum Analytical Method[M]. Shanghai:East China University of Science and Technology Press, 2009.

    21. [21]

      XIANG Jian-hua, ZENG Fan-gui, LI Bin. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol, 2013,41(4):391-399.  

    22. [22]

      XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen. Model construction of the macro molecular structure of Yanzhou coal and its molecular simulation[J]. J Fuel Chem Technol, 2011,39(7):481-488.  

    23. [23]

      ANDREAS G. Aspects of solid state13C CPMAS NMR spectroscopy in coals from the Balkan peninsula[J]. J Serb Chem Soc, 2003,68(8/9):599-605.

    24. [24]

      LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. J Fuel Chem Technol, 2013,41(6):641-648.  

    25. [25]

      WEI Z, GAO X, ZHANG D, DA J. Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state13C NMR spectroscopy[J]. Energy Fuels, 2005,19(1):240-250. doi: 10.1021/ef0498566

    26. [26]

      LIU P, WANG L L, ZHOU Y, PAN T Y, LU X L, ZHANG D X. Effect of hydrothermal treatment on the structure and pyrolysis product distribution of Xiaolongtan lignite[J]. Fuel, 2016,164:110-118. doi: 10.1016/j.fuel.2015.09.092

    27. [27]

      LIU Peng, WANG Lan-lan, ZHANG De-xiang. Structural evolution of Xianfe ng lignite during hydrothermal treatment[J]. J Fuel Chem Technol, 2016,44(2):129-137.  

    28. [28]

      YAN J, BAI Z, BAI J, GUO Z, LI W. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J]. Fuel, 2014,128(4):39-45.

    29. [29]

      ZHANG Ping, PAN Tie-ying, Zhang De-xiang. Thermally dissolved products of coal-oil slurry during direct coal liquefaction studied by NMR spectroscopy[J]. Chin J Magn Reson, 2006,23(1):41-47.

    30. [30]

      LOVE G D, LAW R V, SNAPE C E. Determination of Nonprotonated Aromatic Carbon Concentrations in Coals by Single Pulse Excitation13C NMR[J]. Energy Fuels, 1993,7(5):639-644. doi: 10.1021/ef00041a012

    31. [31]

      MERCEDS M V, JOHN M AN, JOSE D R, COLIN E S. Quantitative solid-state13C NMR. measurements on cokes, chars and coal tar pitch fractions[J]. Fuel, 1996,75(15):1721-1726. doi: 10.1016/S0016-2361(96)00151-2

    32. [32]

      ROBERT A MEYERS. Coal Structure[M]. New York:Academic press. 1982.

    33. [33]

      FIDEL C M, VLADISLAV V L, JONATHAN P M. A molecular model for Illinois No. 6 Argonne Premium coal:Moving toward capturing the continuum structure[J]. Fuel, 2012,95(1):35-49.

    34. [34]

      HIROYUKI K, YASUMASA Y, IKUO S. Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state13C NMR spectra[J]. J Anal Appl Pyrolysis, 2000,53(1):35-50. doi: 10.1016/S0165-2370(99)00058-3

  • 加载中
    1. [1]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    2. [2]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    6. [6]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    19. [19]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(22)
  • Abstract views(3672)
  • HTML views(1373)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return