Citation: Sun Ming, Lu Xin, Li Zheng, Zhang Lanhe, Zhang Haifeng. Progress in the Role of Extracellular DNA in the Biofilm Construction[J]. Chemistry, ;2018, 81(2): 134-138. shu

Progress in the Role of Extracellular DNA in the Biofilm Construction

Figures(1)

  • Biofilm is referred to the bacteria forming the special microbial aggregations in order to adapt to the change of external environment. The biofilm process is an important branch of water biochemical treatment technology, which is becoming more and more attentive in the field of environmental engineering. This article summarized studies on the role of extracellular DNA in the process of biofilm forming. Firstly, the classification of extracellular polymeric substance(EPS) and eDNA distribution in EPS were described. Further, it illuminated that QS(quorum sensing)-mechanism mediated the release of eDNA in the bacterial cells. In order to provide more detailed information about the role of eDNA in the process of biofilm forming, the eDNA-mediated performance in the adhesion and aggregation of bacterial was revealed according to XDLVO theory. Moreover, the combinative behavior of eDNA with proteins and polysaccharides were also discussed. Lastly, the future trends in the influence of eDNA on the process of biofilm forming in the coming years were addressed.
  • 加载中
    1. [1]

       

    2. [2]

      L Hall-Stoodley, J W Costerton, P Stoodley. Nat. Rev. Microbiol., 2004, 2(2): 95~108. 

    3. [3]

      G V Tetz, N K Artemenko, V V Tetz. Antimicrob. Agents Chemother., 2009, 53(3): 1204~1209. 

    4. [4]

      T Das, S Sehar, M Manefield. Environ. Microbiol. Rep., 2013, 5(6): 778~786. 

    5. [5]

      I Ramos, L E P Dietrich, A Pricewhelan et al. Res. Microbiol., 2010, 161(3): 187~191. 

    6. [6]

      M Okshevsky, V R Regina, R L Meyer. Curr. Opin. Biotechnol., 2015, 33: 73~80. 

    7. [7]

      C S Laspidou, B E Rittmann. Water Res., 2002, 36(11): 2711~2720. 

    8. [8]

      F Lü, J W Wang, P J He et al. Biotechnol. Biofuels, 2016, 9(1): 1~14. 

    9. [9]

      G H Yu, P J He, L M Shao et al. Environ. Sci. Technol., 2008, 42(21): 7944~7949. 

    10. [10]

      B B Wang, Q Chang, D C Peng et al. Water Res., 2014, 64(7): 53~60. 

    11. [11]

      X YLi, J Xu, H Q Yu. Chem. Eng. J., 2016, 303: 627~635. 

    12. [12]

      H Liu, H H Fang. J. Biotechnol., 2002, 95(3): 249~256. 

    13. [13]

      P Zhang, F Fang, Y P Chen et al. Chemosphere, 2014, 117: 59~65. 

    14. [14]

      B Q Liao, D G Allen, I G Droppo et al. Water Res., 2001, 35(2): 339~350. 

    15. [15]

       

    16. [16]

       

    17. [17]

    18. [18]

      V C Thomas, L E Hancock. Int. J. Artif. Organs, 2009, 32(9): 537~544. 

    19. [19]

      H K Kuramitsu, V Trapa. J. Gen. Microbiol., 1984, 130(10): 2497~2500. 

    20. [20]

      H L Hamilton, N M Dommguez, K J Schwartz et al. Mol. Microbiol., 2005, 55(6): 1704~1721. 

    21. [21]

      K M Yeon, W S Cheong, S H Oh et al. Environ. Sci. Technol., 2009, 43(2): 380~385. 

    22. [22]

      Y C Li, J P Lv, C Zhong et al. J. Environ. Sci., 2014, 26(8): 1615~1621. 

    23. [23]

      M Allesen-Holm, K B Barken, L Yang et al. Mol. Microbiol., 2006, 59(4): 1114~1128.

    24. [24]

      J Gödeke, K Paul, J Lassak et al. ISME J., 2011, 5(4): 613~626. 

    25. [25]

      T Das, P K Sharma, H J Busscher et al. Appl. Environ. Microbiol., 2010, 76(10): 3405~3408. 

    26. [26]

      V C Thomas, L R Thurlow, D Boyle et al. J. Bacteriol., 2008, 190(16): 5690~5698. 

    27. [27]

      K M Nielsen, P J Johnsen, D Bensasson et al. Environ. Biosaf. Res., 2007, 6(1/2): 37~53. 

    28. [28]

      J B Kaplan, S Jabbouri, I Sadovskaya. Res. Microbiol., 2011, 162(5): 535~541. 

    29. [29]

      T Das, B P Krom, H C Van der Mei et al. Soft Matter, 2011, 7(6): 2927~2935. 

    30. [30]

      Z Qin, Y Ou, L Yang et al. J. Microbiol., 2007, 153: 2083~2092. 

    31. [31]

      S Vilain, J M Pretorius, J Theron et al. Appl. Environ. Microbiol., 2009, 75(9): 2861~2868. 

    32. [32]

      C B Whitchurch, T Tolker-Nielsen, P C Ragas et al. Science, 2002, 295: 1487. 

    33. [33]

      J W Osterton, P S Stewart, E P Greenberg. Science, 1999, 284(5418): 1318~1322. 

    34. [34]

      L R Johnson. Theor. Biol., 2008, 251(1): 24~34. 

    35. [35]

      E E Mann, K C Rice, B R Boles et al. PloS One, 2009, 4(6): e5822. 

    36. [36]

      M Lappann, H Claus, T Van Alen et al. Mol. Microbiol., 2010, 75(6): 1355~1371. 

    37. [37]

      L H Zhao, X L Qu, M J Zhang et al. Bioresour. Technol., 2016, 214: 355. 

    38. [38]

      V T Nguyen, T W R Chia, M S Turner et al. J. Microbiol. Methods, 2011, 86(1): 89~96. 

    39. [39]

      T Das, P K Sharma, B P Krom et al. Langmuir, 2011b, 27(16): 10113~10118. 

    40. [40]

      C Toutain, N Caizza, M Zegans et al. Res. Microbiol., 2007, 158(5): 471~477. 

    41. [41]

      S M Hinsa, M Espinosa-Urgel, J L Ramos et al. Mol. Microbiol., 2003, 49(4): 905~918. 

    42. [42]

      W M Dunne. Clin. Microbiol. Rev., 2002, 15: 155~166. 

    43. [43]

      J M Ghigo. Nature, 2001, 412(6845): 442~445. 

    44. [44]

      G A O'Toole, R Kolter. Mol. Microbiol., 1998, 28(3): 449~461. 

    45. [45]

      P K Sharma, K H Rao. Colloids Surf. B, 2003, 29(1): 21~38. 

    46. [46]

      C J Van Oss, M Dekker. Powder Technol., 1995, 82: 209~213. 

    47. [47]

      V R Regina, A R Lokanathan, J J Modrzyn et al. PloS One, 2014, 9(8): e105033. 

    48. [48]

      J Azeredo, J Visser, R Oliveira. Colloids Surf. B, 1999, 14: 141~148. 

    49. [49]

      H Waheed, I Hashmi, S J Khan et al. Int. Biodeterior. Biodegrad., 2016, 113: 66~73. 

    50. [50]

      M Harmsen, M Lappann, S Knøchel et al. Appl. Environ. Microbiol., 2010, 76(7): 2271~2279. 

    51. [51]

      K C Rice, E E Mann, J L Endres et al. PNAS, 2007, 104(19): 8113~8118. 

    52. [52]

      H H Liu, Y R Yang, X C Shen et al. Curr. Microbiol., 2008, 57(2): 139~144. 

    53. [53]

      J J T M Swartjes, T Das, S Sharifi et al. Adv. Funct. Mater., 2013, 23(22): 2843~2849. 

    54. [54]

      S D Goodman, K P Obergfell, J A Jurcisek et al. Mucosal Immunol., 2011, 4(6): 625~637. 

    55. [55]

      F C Petersen, L Tao, A A Scheie. J. Bacteriol., 2005, 187(13): 4392~4400. 

    56. [56]

      M J Huseby, A C Kruse, J Digre et al. PNAS, 2010, 107(32): 14407~14412. 

    57. [57]

      S Liao, M I Klein, K P Heim et al. J. Bacteriol., 2014, 196(13): 2355~2366. 

    58. [58]

      W Hu, L Li, S Sharma et al. PloS One, 2012, 7(12): e51905. 

  • 加载中
    1. [1]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    2. [2]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    12. [12]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(25)
  • Abstract views(1736)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return