Citation: Xueli Li, Jiping Liu, Zhenwen Sun, Weiwei Yang, Nianhua Li, Kunpeng Song. Research Progress in Detection Methods of Acetone Peroxide Explosives[J]. Chemistry, ;2021, 84(5): 411-418, 410. shu

Research Progress in Detection Methods of Acetone Peroxide Explosives

  • Corresponding author: Jiping Liu, liujp@bit.edu.cn
  • Received Date: 8 August 2020
    Accepted Date: 30 November 2020

Figures(5)

  • Terrorist attacks are one of the major hidden dangers to security in the world today. Peroxide explosives are often used by criminals because of their difficulty in being detected by conventional means. Acetone peroxide explosives are commonly used explosives by terrorists among them. This article mainly summarizes the different detection methods of acetone peroxide explosives in the past 20 years, mainly including traditional detection technologies such as fluorescence detection technology and mass spectrometry, chromatography, Raman spectroscopy and other spectral technologies, as well as electrochemical methods, chemical colorimetry, physical sensors and new biological immune detection technology in the field of detection of acetone peroxide explosives.
  • 加载中
    1. [1]

      Tan S, Sagara Y, Liu Y, et al. J. Cell Biol., 1998, 141: 1423~1432. 

    2. [2]

      McDonnell G, Russell A D. Clin. Microbiol. Rev., 1999, 12: 147. 

    3. [3]

      Roach J, Ekblom P, Flynn R. Secur. J., 2005, 18: 7~25.

    4. [4]

      Ferris K F, Bartlett R J. J. Am. Chem. Soc., 1992, 114: 8302~8303. 

    5. [5]

      Ladbeck S R, Vogel M, Karst U. Anal. Bioanal. Chem., 2006, 386: 559~565. 

    6. [6]

      Wang J. Electroanalysis, 2007, 19: 415~423. 

    7. [7]

      Sanchez J C, Trogler W C. J. Mater. Chem., 2008, 18: 3143~3156. 

    8. [8]

       

    9. [9]

       

    10. [10]

       

    11. [11]

       

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

      Burks R M, Hage D S. Anal. Bioanal. Chem., 2009, 395: 301~313. 

    16. [16]

       

    17. [17]

       

    18. [18]

      Germain M E, Knapp M J. Inorg. Chem., 2008, 47: 9748~9750. 

    19. [19]

      Garreffi B P, Guo M, Tokranova N, et al. Sens. Actuat. B, 2018, 276: 466~471. 

    20. [20]

      Xu W, Fu Y, Gao Y, et al. Chem. Commun., 2015, 51: 10868~10870. 

    21. [21]

      Gredilla C P, Calvo G J, Cuevas J V, et al. Chem. Eur. J, 2017, 23: 13973~13979. 

    22. [22]

      Calvo G J, Gredilla C P, Llorente I M, et al. J. Mater. Chem. A, 2018, 6: 4416~4423. 

    23. [23]

      Malashikhin S, Finney N S. J. Am. Chem. Soc., 2008, 130: 12846~12847. 

    24. [24]

      Ladbeck S R, Kolla P, Karst U. Analyst, 2002, 127: 1152~1154. 

    25. [25]

      Sella E, Shabat D. Chem. Commun., 2008, 44: 5701~5703.

    26. [26]

      Tarvin M, McCord B, Mount K, et al. J. Chromatogr. A, 2010, 1217: 7564~7572. 

    27. [27]

      Xiong W, Zhu Q, Gong Y, et al. Anal. Chem., 2018, 90: 4273~4276. 

    28. [28]

      Almenar E, Costero A M, Gaviña P, et al. Roy. Soc. Open Sci., 2018, 5: 171787. 

    29. [29]

      Zhu Q H, Zhang G H, Yuan W L, et al. Chem. Commun., 2019, 55: 13661~13664. 

    30. [30]

      Schulte-Ladbeck R, Kolla P, Karst U. Anal. Chem., 2003, 75: 731~735. 

    31. [31]

      Schulte-Ladbeck R, Karst U. Chromatographia, 2003, 57: S61~S5.

    32. [32]

      Schulte-Ladbeck R, Edelmann A, Quintás G, et al. Anal. Chem., 2006, 78: 8150~8155. 

    33. [33]

      Tarvin M, McCord B, Mount K, et al. Forensic Sci. Int., 2011, 209: 166~162. 

    34. [34]

      Johns C, Hutchinson J P, Guijt R M, et al. Anal. Chim. Acta, 2015, 876: 91~97. 

    35. [35]

      Andrasko J, Andrasko L L, Dahlen J, et al. J. Forensic Sci., 2017, 62: 1022~1027. 

    36. [36]

      Buttigieg G A, Knight A K, Denson S, et al. Forensic Sci. Int., 2003, 135: 53~59. 

    37. [37]

      Wilson P F, Prince B J, McEwan M J. Anal. Chem., 2006, 78: 575~579. 

    38. [38]

      Rodriguez C I, Chen H, Cooks R G. Chem. Commun., 2006, 42: 953~955.

    39. [39]

      Mullen C, Irwin A, Pond B V, et al. Anal. Chem., 2006, 78: 3807~3814. 

    40. [40]

      Rodríguez C I, Soto H H, Chen H, et al. Anal. Chem., 2008, 80: 1512~1519. 

    41. [41]

      Correa N D, Perez M J, Zacca J J, et al. Propell. Explos. Pyrot., 2017, 42: 370~375. 

    42. [42]

      Rowell F, Seviour J, Lim A Y, et al. Forensic Sci. Int., 2012, 221: 84~91. 

    43. [43]

      Zhou Q, Peng L, Jiang D, et al. Sci. Rep., 2015, 5: 10659. 

    44. [44]

       

    45. [45]

      Gamble S C, Campos L C, Morgan R M. Environ. Forensics, 2017, 18: 50~61. 

    46. [46]

      Costa C, van Es E M, Sears P, et al. Propell. Explos. Pyrot., 2019, 44: 1021~1027. 

    47. [47]

      Butt N R, Nilsson M, Jakobsson A, et al. IEEE Geosci. Remote S., 2011, 8: 517~521. 

    48. [48]

      Vodochodsky O, Jalovy Z, Matyas R, et al. Appl. Spectrosc., 2019, 73: 195~202. 

    49. [49]

      Eliasson C, Macleod N A, Matousek P. Anal. Chem., 2007, 79: 8185~8189. 

    50. [50]

      Tsiminis G, Chu F, Warren-Smith S, et al. Sensors, 2013, 13: 13163~13177. 

    51. [51]

      Oxley J, Smith J, Brady J, et al. Appl. Spectrosc., 2008, 62: 906~915. 

    52. [52]

      Rabenecker P, Pinkwart K. Propell. Explos. Pyrot., 2009, 34: 274~279. 

    53. [53]

      Parajuli S, Miao W. Anal. Chem., 2013, 85: 8008~8015. 

    54. [54]

      Lu D, Cagan A, Munoz R A, et al. Analyst, 2006, 131: 1279~1281. 

    55. [55]

      Munoz R A, Lu D, Cagan A, et al. Analyst, 2007, 132: 560~565. 

    56. [56]

      Benedet J, Lu D, Cizek K, et al. Anal. Bioanal. Chem., 2009, 395: 371~376. 

    57. [57]

      Banerjee S, Mohapatra S K, Misra M, et al. Nanotechnology, 2009, 20: 075502. 

    58. [58]

      Xie Y, Cheng I F. Microchem. J., 2010, 94: 166~170. 

    59. [59]

      Mbah J C, Steward S, Egiebor N O. Sens. Actuat. B, 2016, 222: 693~697. 

    60. [60]

      Cui Y, Jin Y, Chen X, et al. ACS Sensors, 2018, 3(8): 1439~1444. 

    61. [61]

      Bohrer F I, Colesniuc C N, Park J, et al. J. Am. Chem. Soc., 2008, 130: 3712~3713. 

    62. [62]

      Chu Y, Mallin D, Amani M, et al. Sens. Actuat. B, 2014, 197: 376~384. 

    63. [63]

      Lichtenstein A, Havivi E, Shacham R, et al. Nat. Commun., 2014, 5: 4195. 

    64. [64]

      Elbasuney S. Trends Anal. Chem., 2018, 102: 272~279. 

    65. [65]

      zer A, Durmazel S, Erçaǧ E, et al. Sens. Actuat. B, 2017, 247: 98~107. 

    66. [66]

      Bagheri N, Khataee A, Hassanzadeh J, et al. J. Hazard. Mater., 2018, 360: 233~242. 

    67. [67]

      Peters K L, Corbin I, Kaufman L M, et al. Anal. Methods, 2015, 7: 63~70. 

    68. [68]

      Eren S, Uzer A, Can Z, et al. Analyst, 2010, 135: 2085~2091. 

    69. [69]

      Lin H, Suslick K S. J. Am. Chem. Soc., 2010, 132: 15519~15521. 

    70. [70]

      Xu M, Bunes B R, Zang L. ACS Appl. Mater. Interf., 2011, 3: 642~647. 

    71. [71]

       

    72. [72]

       

    73. [73]

      Lock J P, Geraghty E, Kagumba L C, et al. Thin Solid Films, 2009, 517: 3584~3587. 

    74. [74]

      Lubczyk D, Siering C, Lörgen J, et al. Sens. Actuat. B, 2010, 143: 561~566. 

    75. [75]

      Duy W S D, Hackett B E, Nadeau S C, et al. IEEE Sens. J., 2013, 13: 4780~4785. 

    76. [76]

      Kumar D, Gautam S, Kumar S, et al. Spectrochim. Acta A, 2017, 176: 47~51. 

    77. [77]

      Divin Y, Poppe U, Gubankov V N, et al. IEEE Sens. J., 2008, 8: 750~757. 

    78. [78]

      Climent E, Groninger D, Hecht M, et al. Chem. Eur. J, 2013, 19(13): 4117~4122. 

    79. [79]

      Walter M A, Pfeifer D, Kraus W, et al. Langmuir, 2010, 26: 15418~15423. 

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(28)
  • Abstract views(4015)
  • HTML views(816)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return