Citation: CHENG Yun, Lü Wen-ting, JIA Ji-qiang, ZHANG Ji-dong, BU Chang-sheng, ZHANG Ju-bing, WANG Xin-ye. Effect of water vapor on lead adsorption by kaolinite at high temperatures[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1327-1334. shu

Effect of water vapor on lead adsorption by kaolinite at high temperatures

  • Corresponding author: WANG Xin-ye, xinye.wang@njnu.edu.cn
  • Received Date: 11 September 2020
    Revised Date: 28 September 2020

    Fund Project: the National Natural Science Foundation of China 51706106The project was supported by the National Key R & D Program of China (2018YFB0605102), the National Natural Science Foundation of China (51706106) and the Key R & D Program of Jiangsu Province (SBE2019740303)the National Key R & D Program of China 2018YFB0605102the Key R & D Program of Jiangsu Province SBE2019740303

Figures(8)

  • The effect of water vapor on lead adsorption by kaolinite at high temperatures was studied using a drop tube furnace. The lead was in the forms of PbO and PbCl2. Firstly, effect of 0-20% water vapor was studied on adsorption of PbO (1100-1300 ℃) and PbCl2 (800-1300 ℃) by kaolinite. Then, mechanism of high-temperature adsorption of kaolin was revealed according to the analysis of XRD, SEM and residual hydroxyl group fraction. The results showed that water vapor reduced the loss of hydroxyl groups on kaolinite surface at high temperatures, hindering PbO adsorption and promoting PbCl2 adsorption. At the same time, due to production of inert mullite and collapse of pore structure of kaolinite at high temperatures, the optimal adsorption temperatures of PbO and PbCl2 were 1200 and 1000 ℃, respectively.
  • 加载中
    1. [1]

      National Bureau of Statistics. China Statistical Yearbook 2019[M]. Beijing: China Statistics Press, 2019.

    2. [2]

      FU Biao. The partitioning and transformation behavior of hazardous trace elements during coal utilization[D]. Anhui: University of Science and Technology of China, 2019. 

    3. [3]

      MEIJ R, WINKEL B H. Trace elements in world steam coal and their behaviour in dutch coal-fired power stations: A review[J]. Int J Coal Geol, 2009,77(3):289-93.  

    4. [4]

      WANG Xin-ye. Volatilization characteristics and emissions control of lead and cadmium during waste incineration[D]. Nanjing: Southest University, 2015. 

    5. [5]

      ZHANG Ying-ying. The cardiactoxicity effect and molecular mechanism in response to atmospheric PM2.5 inhalation[D]. Taiyuan: Shanxi University, 2019. 

    6. [6]

      FANG Ting. Environmental geochemistry of lead in coal mining area[D]. Hefei: University of Science and Technology of China, 2019.

    7. [7]

      BAI Xiang-fei, LI Wen-hua, CHEN Ya-fei, JIANG Ying. The general distributions of trace elements in Chinese coals[J]. Coal Qual Technol, 2007(1):1-4. doi: 10.3969/j.issn.1007-7677.2007.01.001

    8. [8]

      BAI Xiang-fei. The distributions, modes of occurrenxe and volatility of trace elements in coals of China[D]. Beijing: China Coal Research Institute, 2003. 

    9. [9]

      LU K, LU J, CHEN L. Lead distribution in permo-carboniferous coal from the North China plate, China[J]. Environ Geochem Health, 2005,27(1):31-7.  

    10. [10]

      LIU K, QING M, CHANG Y. Sources and health risks of heavy metals in PM2.5 in a campus in a typical suburb area of taiyuan, North China[J]. Atmosphere, 2018,9(2)10.  

    11. [11]

      DONG Shi-hao, XIE Yang, HUANGFU Yan-qi, SHI Xu-rong, YI Rui, SHI Guo-liang, FENG Ying-chang. Source apportionment and heath risk quantification of heavy metals in PM2.5 in Yangzhou, China[J]. Environ Sci, 2019,40(2):540-547.  

    12. [12]

      YANG Jing, CHEN Long, LIU Min, MENG Xiang-zhou, ZHANG Xi. Historical trends of atmospheric Pb and Hg emissions from fossil fuel combustion in Shanghai[J]. Environ Sci, 2018,39(9):3987-3994.  

    13. [13]

      Sources of atmospheric lead (Pb) in and around an Indian megacity[J]. Atmos Environ, 2018, 193(33): 57-65.

    14. [14]

      HUANG Y, WANG X, LIU C, WANG Y, DONG L. Kaolinite induced control of particulate lead and cadmium emissions during fluidized bed waste incineration[J]. Asia-Pac J Chem Eng, 2017,12(2):321-31.  

    15. [15]

      PUNJAK W A, SHADMAN F. Aluminosilicate sorbents for control of alkali vapors during coal combustion and gasification[J]. Energy Fuels, 1988,2(3):702-708.  

    16. [16]

      SCOTTO M V, UBEROI M, PETERSON T W, SHADMAN F, WENDT J O.L. Metal capture by sorbents in combustion processes[J]. Fuel Process Technol, 14994,39(1/3):357-372.  

    17. [17]

      CHENG Yun, WANG Xin-ye, LV Wen-ting, HUANG Ya-ji, XIE Hao, GUO Ruo-jun, PIAO Gui-lin. A review on heavy and alkali metals adsorption by kaolin at high temperature[J]. Chem Ind Eng Prog, 2019,38(8):3852-3865.  

    18. [18]

      WANG Hao, LIU Xiao-wei, XU Yi-shu, ZHANG Yu-feng, WANG Xiao-peng. Study on the emission characteristics of Pb and V during pulverized coal combustion by adding kaolin and modified kaolin[J]. Proc CSEE, 2019,39(6):1692-1699+1865.  

    19. [19]

      MA Yang-yang, ZHONG Zhao-ping, LAI Xu-dong. Enrichment of heavy metals during coal combustion by mineral additives[J]. Chem Ind Eng Prog, 2020,39(6):2479-2486.  

    20. [20]

      YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009,7(6):477-482.  

    21. [21]

      YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proc Combust Inst, 2005,30(2):3009-3016.  

    22. [22]

      WANG Xinye, HUANG Yaji, ZHONG Zhaoping, YAN Yupeng, NIU Miaomiao, WANG Yongxing. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Process Technol, 2014,119:228-235.  

    23. [23]

      SHI Yan-hong, WU Hua-cheng. Emission characteristics of Pb in coal-fired plants: Research development[J]. Therm Power Gen, 2016,45(1):1-8. doi: 10.3969/j.issn.1002-3364.2016.01.001

    24. [24]

      CHENG Y, XING J, BU C, ZHANG J, PIAO G, HUANG Y, XIE H, WANG X. Dehydroxylation and structural distortion of kaolinite as a high-temperature sorbent in the furnace[J]. Minerals, 2019,9(10)587.  

    25. [25]

      WENDT J O L, LEE S. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel, 2010,89(4):894-903.  

    26. [26]

      GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2002,131(3):299-307.  

    27. [27]

      YOO J I, SHINAGAWA T, WOOD J P, LINAK W P, SANTOIANNI D A, KING C J, SEO Y C, WENDT J O L. High-temperature sorption of cesium and strontium on dispersed kaolinite powders[J]. Environ Sci Technol, 2005,39(13):5087-5094.  

    28. [28]

      GALE T K, WENDT J O L. In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. Proc Combust Inst, 2005,30(2):2999-3007.  

    29. [29]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, LAXMINARAYAN Y, SANDER B, GLARBORG P. Potassium capture by kaolin, part 2: K2CO3, KCl, and K2SO4[J]. Energy Fuels, 2018,32(3):3566-3578.  

    30. [30]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, SANDER B, GLARBORG P. Potassium capture by kaolin, part 1: KOH[J]. Energy Fuels, 2018,32(2):1851-1862.  

    31. [31]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, Bøjer M, GLARBORG P. Entrained Flow Reactor Study of K-Capture by Solid Additives[C]. Proceedings of the 24th European Biomass Conference & Exhibition, 2016.

    32. [32]

      XU Y, LIU X, WANG H, ZENG X, ZHANG Y, HAN J, XU M, PAN S. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J]. Environ Sci Technol, 2018,52(5):8718-8724.  

    33. [33]

      GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2002,131(3):299-307.  

    34. [34]

      ZHANG X, LIU H, XING H, WANG G, LI H, XIAO K, LIU W, YU Y, YAO H. Investigation of potassium vapor time-resolved adsorption and potassium-sodium competitive adsorption by modified kaolinite[J]. Fuel, 2019,258(15)166124.  

    35. [35]

      XING H, LIU H, ZHANG X, DENG H, HU H, YAO H. Enhanced sodium adsorption capacity of kaolinite using a combined method of thermal pre-activation and intercalation-exfoliation: Alleviating the problems of slagging and fouling during the combustion of Zhundong coal[J]. Fuel, 2019,239(3):312-319.  

    36. [36]

      ZHANG X, LIU H, XING H, WANG G, DENG H, HU H, LI X, YAO H. Correlations between the sodium adsorption capacity and the thermal behavior of modified kaolinite during the combustion of Zhundong coal[J]. Fuel, 2019,237(2):170-177.  

    37. [37]

      YU M, HUANG Y, XIA W, ZHU Z, FAN C, LIU C, DONG L, XU L, LIU L, ZHA J, WANG X. PbCl2 capture by kaolin and metakaolin under different influencing factors of thermal treatment[J]. Energy Fuels, 2020,34(2):2284-2292.  

    38. [38]

      GALE T K, WENDT J O L. Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Sci Technol, 2003,37(11):865-876.  

    39. [39]

      WANG X, HUANG Y, ZHONG Z, PAN Z, LIU C. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016,166(2):333-339.  

    40. [40]

      WANG X, HUANG Y, PAN Z, WANG Y, LIU C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015,295(9):43-54.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(1)
  • Abstract views(265)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return