Citation: CHENG Yun, Lü Wen-ting, JIA Ji-qiang, ZHANG Ji-dong, BU Chang-sheng, ZHANG Ju-bing, WANG Xin-ye. Effect of water vapor on lead adsorption by kaolinite at high temperatures[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1327-1334. shu

Effect of water vapor on lead adsorption by kaolinite at high temperatures

  • Corresponding author: WANG Xin-ye, xinye.wang@njnu.edu.cn
  • Received Date: 11 September 2020
    Revised Date: 28 September 2020

    Fund Project: the National Natural Science Foundation of China 51706106The project was supported by the National Key R & D Program of China (2018YFB0605102), the National Natural Science Foundation of China (51706106) and the Key R & D Program of Jiangsu Province (SBE2019740303)the National Key R & D Program of China 2018YFB0605102the Key R & D Program of Jiangsu Province SBE2019740303

Figures(8)

  • The effect of water vapor on lead adsorption by kaolinite at high temperatures was studied using a drop tube furnace. The lead was in the forms of PbO and PbCl2. Firstly, effect of 0-20% water vapor was studied on adsorption of PbO (1100-1300 ℃) and PbCl2 (800-1300 ℃) by kaolinite. Then, mechanism of high-temperature adsorption of kaolin was revealed according to the analysis of XRD, SEM and residual hydroxyl group fraction. The results showed that water vapor reduced the loss of hydroxyl groups on kaolinite surface at high temperatures, hindering PbO adsorption and promoting PbCl2 adsorption. At the same time, due to production of inert mullite and collapse of pore structure of kaolinite at high temperatures, the optimal adsorption temperatures of PbO and PbCl2 were 1200 and 1000 ℃, respectively.
  • 加载中
    1. [1]

      National Bureau of Statistics. China Statistical Yearbook 2019[M]. Beijing: China Statistics Press, 2019.

    2. [2]

      FU Biao. The partitioning and transformation behavior of hazardous trace elements during coal utilization[D]. Anhui: University of Science and Technology of China, 2019. 

    3. [3]

      MEIJ R, WINKEL B H. Trace elements in world steam coal and their behaviour in dutch coal-fired power stations: A review[J]. Int J Coal Geol, 2009,77(3):289-93.  

    4. [4]

      WANG Xin-ye. Volatilization characteristics and emissions control of lead and cadmium during waste incineration[D]. Nanjing: Southest University, 2015. 

    5. [5]

      ZHANG Ying-ying. The cardiactoxicity effect and molecular mechanism in response to atmospheric PM2.5 inhalation[D]. Taiyuan: Shanxi University, 2019. 

    6. [6]

      FANG Ting. Environmental geochemistry of lead in coal mining area[D]. Hefei: University of Science and Technology of China, 2019.

    7. [7]

      BAI Xiang-fei, LI Wen-hua, CHEN Ya-fei, JIANG Ying. The general distributions of trace elements in Chinese coals[J]. Coal Qual Technol, 2007(1):1-4. doi: 10.3969/j.issn.1007-7677.2007.01.001

    8. [8]

      BAI Xiang-fei. The distributions, modes of occurrenxe and volatility of trace elements in coals of China[D]. Beijing: China Coal Research Institute, 2003. 

    9. [9]

      LU K, LU J, CHEN L. Lead distribution in permo-carboniferous coal from the North China plate, China[J]. Environ Geochem Health, 2005,27(1):31-7.  

    10. [10]

      LIU K, QING M, CHANG Y. Sources and health risks of heavy metals in PM2.5 in a campus in a typical suburb area of taiyuan, North China[J]. Atmosphere, 2018,9(2)10.  

    11. [11]

      DONG Shi-hao, XIE Yang, HUANGFU Yan-qi, SHI Xu-rong, YI Rui, SHI Guo-liang, FENG Ying-chang. Source apportionment and heath risk quantification of heavy metals in PM2.5 in Yangzhou, China[J]. Environ Sci, 2019,40(2):540-547.  

    12. [12]

      YANG Jing, CHEN Long, LIU Min, MENG Xiang-zhou, ZHANG Xi. Historical trends of atmospheric Pb and Hg emissions from fossil fuel combustion in Shanghai[J]. Environ Sci, 2018,39(9):3987-3994.  

    13. [13]

      Sources of atmospheric lead (Pb) in and around an Indian megacity[J]. Atmos Environ, 2018, 193(33): 57-65.

    14. [14]

      HUANG Y, WANG X, LIU C, WANG Y, DONG L. Kaolinite induced control of particulate lead and cadmium emissions during fluidized bed waste incineration[J]. Asia-Pac J Chem Eng, 2017,12(2):321-31.  

    15. [15]

      PUNJAK W A, SHADMAN F. Aluminosilicate sorbents for control of alkali vapors during coal combustion and gasification[J]. Energy Fuels, 1988,2(3):702-708.  

    16. [16]

      SCOTTO M V, UBEROI M, PETERSON T W, SHADMAN F, WENDT J O.L. Metal capture by sorbents in combustion processes[J]. Fuel Process Technol, 14994,39(1/3):357-372.  

    17. [17]

      CHENG Yun, WANG Xin-ye, LV Wen-ting, HUANG Ya-ji, XIE Hao, GUO Ruo-jun, PIAO Gui-lin. A review on heavy and alkali metals adsorption by kaolin at high temperature[J]. Chem Ind Eng Prog, 2019,38(8):3852-3865.  

    18. [18]

      WANG Hao, LIU Xiao-wei, XU Yi-shu, ZHANG Yu-feng, WANG Xiao-peng. Study on the emission characteristics of Pb and V during pulverized coal combustion by adding kaolin and modified kaolin[J]. Proc CSEE, 2019,39(6):1692-1699+1865.  

    19. [19]

      MA Yang-yang, ZHONG Zhao-ping, LAI Xu-dong. Enrichment of heavy metals during coal combustion by mineral additives[J]. Chem Ind Eng Prog, 2020,39(6):2479-2486.  

    20. [20]

      YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009,7(6):477-482.  

    21. [21]

      YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proc Combust Inst, 2005,30(2):3009-3016.  

    22. [22]

      WANG Xinye, HUANG Yaji, ZHONG Zhaoping, YAN Yupeng, NIU Miaomiao, WANG Yongxing. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Process Technol, 2014,119:228-235.  

    23. [23]

      SHI Yan-hong, WU Hua-cheng. Emission characteristics of Pb in coal-fired plants: Research development[J]. Therm Power Gen, 2016,45(1):1-8. doi: 10.3969/j.issn.1002-3364.2016.01.001

    24. [24]

      CHENG Y, XING J, BU C, ZHANG J, PIAO G, HUANG Y, XIE H, WANG X. Dehydroxylation and structural distortion of kaolinite as a high-temperature sorbent in the furnace[J]. Minerals, 2019,9(10)587.  

    25. [25]

      WENDT J O L, LEE S. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel, 2010,89(4):894-903.  

    26. [26]

      GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2002,131(3):299-307.  

    27. [27]

      YOO J I, SHINAGAWA T, WOOD J P, LINAK W P, SANTOIANNI D A, KING C J, SEO Y C, WENDT J O L. High-temperature sorption of cesium and strontium on dispersed kaolinite powders[J]. Environ Sci Technol, 2005,39(13):5087-5094.  

    28. [28]

      GALE T K, WENDT J O L. In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. Proc Combust Inst, 2005,30(2):2999-3007.  

    29. [29]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, LAXMINARAYAN Y, SANDER B, GLARBORG P. Potassium capture by kaolin, part 2: K2CO3, KCl, and K2SO4[J]. Energy Fuels, 2018,32(3):3566-3578.  

    30. [30]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, SANDER B, GLARBORG P. Potassium capture by kaolin, part 1: KOH[J]. Energy Fuels, 2018,32(2):1851-1862.  

    31. [31]

      WANG G, JENSEN P A, WU H, FRANDSEN F J, Bøjer M, GLARBORG P. Entrained Flow Reactor Study of K-Capture by Solid Additives[C]. Proceedings of the 24th European Biomass Conference & Exhibition, 2016.

    32. [32]

      XU Y, LIU X, WANG H, ZENG X, ZHANG Y, HAN J, XU M, PAN S. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J]. Environ Sci Technol, 2018,52(5):8718-8724.  

    33. [33]

      GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2002,131(3):299-307.  

    34. [34]

      ZHANG X, LIU H, XING H, WANG G, LI H, XIAO K, LIU W, YU Y, YAO H. Investigation of potassium vapor time-resolved adsorption and potassium-sodium competitive adsorption by modified kaolinite[J]. Fuel, 2019,258(15)166124.  

    35. [35]

      XING H, LIU H, ZHANG X, DENG H, HU H, YAO H. Enhanced sodium adsorption capacity of kaolinite using a combined method of thermal pre-activation and intercalation-exfoliation: Alleviating the problems of slagging and fouling during the combustion of Zhundong coal[J]. Fuel, 2019,239(3):312-319.  

    36. [36]

      ZHANG X, LIU H, XING H, WANG G, DENG H, HU H, LI X, YAO H. Correlations between the sodium adsorption capacity and the thermal behavior of modified kaolinite during the combustion of Zhundong coal[J]. Fuel, 2019,237(2):170-177.  

    37. [37]

      YU M, HUANG Y, XIA W, ZHU Z, FAN C, LIU C, DONG L, XU L, LIU L, ZHA J, WANG X. PbCl2 capture by kaolin and metakaolin under different influencing factors of thermal treatment[J]. Energy Fuels, 2020,34(2):2284-2292.  

    38. [38]

      GALE T K, WENDT J O L. Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Sci Technol, 2003,37(11):865-876.  

    39. [39]

      WANG X, HUANG Y, ZHONG Z, PAN Z, LIU C. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016,166(2):333-339.  

    40. [40]

      WANG X, HUANG Y, PAN Z, WANG Y, LIU C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015,295(9):43-54.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    12. [12]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    13. [13]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    14. [14]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    15. [15]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(1)
  • Abstract views(309)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return