Citation: LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 329-336. shu

Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization

  • Corresponding author: TIAN Zhi-jian, tianz@dicp.ac.cn
  • Received Date: 30 November 2016
    Revised Date: 24 January 2017

Figures(5)

  • A series of WO3-ZrO2 solid acids were synthesized by calcining the equilibrium adsorbed peroxotungstic acid/hydrated zirconia precursors. The influences of peroxotungstic acid concentration and calcination temperature on the composition, structure and acidity of the obtained solid acids were evaluated by using XRD, UV-vis and NH3-TPD. Pt/WO3-ZrO2 catalysts were prepared by impregnation method and characterized by BET, H2-TPR and H2-TPD. The catalytic performance in the hydroisomerization of n-pentane was investigated. It was found that under the same calcination temperature, both the support acidity and the catalyst surface area first increase and then decrease with the increase of peroxotungstic acid concentration, and are maximized when the peroxotungstic acid concentration reaches 82 mmol W/L. When the peroxotungstic acid possesses the same concentration of 59 mmol W/L, the tetragonal zirconia fraction, support acidity and the catalyst surface area decrease with the increase of calcination temperature. When the peroxotungstic acid concentration and the calcination temperature of the support are 82 mmol W/L and 700℃ respectively, the obtained catalyst shows the best catalytic performance. The yield of isopentane reaches 57.7% under the reaction condition of ambient pressure, 250℃, n(H2)/n(n-C5H12)=3 and WHSV=1.0 h-1.
  • 加载中
    1. [1]

      XU Tie-gang, WU Xian-jun, WANG Gang, LI Rui-feng. Light paraffin isomerization catalyst and its development[J]. Chem Ind Eng Prog, 2015,34(2):397-401.  

    2. [2]

      WEYDA H, KÖHLER E. Modern refining concepts-an update on naphtha-isomerization to modern gasoline manufacture[J]. Catal Today, 2003,81(1):51-55. doi: 10.1016/S0920-5861(03)00101-9

    3. [3]

      KONG Xiao-cui, PU Zhong-ying, YU Zhong-wei. Study on deactivation of solid super-acid catalyst for n-pentane isomerization[J]. Acta Pet Sin (Pet Process Sect), 1999,15(4):33-38.  

    4. [4]

      RESOFSZKI G, MUHLER M, SPRENGER S, WILD U, PAÁL Z. Electron spectroscopy of sulfated zirconia, its activity in n-hexane conversion and possible reasons of its deactivation[J]. Appl Catal A:Gen, 2003,240(1/2):71-81.  

    5. [5]

      WANG Ying-jun, ZHANG Hai-ju, SUN Bo, TIAN Xing-gang. Research progress of WO3/ZrO2 in alkane isomerization[J]. Acta Pet Sin (Pet Process Sect), 2009,25(2):283-290.  

    6. [6]

      SONG Hua, SONG Hua-lin, CUI Xue-han, ZHANG Xu. Effect of Pd content on the catalytic performance of SO42-/ZrO2-WO3 solid superacid in pentane isomerization[J]. J Fuel Chem Technol, 2012,40(11):1346-1352.  

    7. [7]

      BARTON D G, SOLED S L, MEITZNER G D, FUENTES G A, IGLESIA E. Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide[J]. J Catal, 1999,181(1):57-72. doi: 10.1006/jcat.1998.2269

    8. [8]

      SANTIESTEBAN J G, VARTULI J C, HAN S, BASTIAN R D, CHANG C D. Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites[J]. J Catal, 1997,168(2):431-441. doi: 10.1006/jcat.1997.1658

    9. [9]

      SIGNORETTO M, SCARPA M, PINNA F, STRUKUL G, CANTON P, BENEDETTI A. WO3/ZrO2 catalysts by sol-gel processing[J]. J Non-Cryst Solids, 1998,225(1):178-183.

    10. [10]

      VALIGI M, GAZZOLI D, PETTITI I, MATTEI G, COLONNA S, DE ROSSI S, FERRARIS G. WOx/ZrO2 catalysts. Part 1. Preparation, bulk and surface characterization[J]. Appl Catal A:Gen, 2002,231(1/2):159-172.

    11. [11]

      HERNÁNDEZ-PICHARDO M L, MONTOYA J A, DEL ANGEL P, VARGAS A, NAVARRETE J. A comparative study of the WOx dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation[J]. Appl Catal A:Gen, 2008,345(2):233-240. doi: 10.1016/j.apcata.2008.05.005

    12. [12]

      VALIGI M, GAZZOLI D, CIMINO A, PROVERBIO E. Ionic size and metal uptake of chromium (Ⅵ), molybdenum (Ⅵ), and tungsten (Ⅵ) species on ZrO2-based catalyst precursors[J]. J Phys Chem B, 1999,103(51):11318-11326. doi: 10.1021/jp9922716

    13. [13]

      LORIDANT S, FECHE C, ESSAYEM N, FIGUERAS F. WOx/ZrO2 catalysts prepared by anionic exchange:In situ Raman investigation from the precursor solutions to the calcined catalysts[J]. J Phys Chem B, 2005,109(12):5631-5637. doi: 10.1021/jp044494o

    14. [14]

      SHUPYK I, PIQUEMAL J Y, BRIOT E, VAULAY M J, CONNAN C, TRUONG S, ZAITSEV V, BOZON-VERDURAZ F. The use of low-nuclearity oxoperoxo molybdenum species to achieve high dispersions on zirconia materials[J]. Appl Catal A:Gen, 2007,325(1):140-153. doi: 10.1016/j.apcata.2007.03.033

    15. [15]

      TIAN Ge, XU Yun-peng, XU Zhu-sheng, TIAN Zhi-jian, LIN Li-wu. Effect of aluminum on the mechanical stress stability of WOx/ZrO2 superacid[J]. Chin J Catal, 2008,29(5):415-417. doi: 10.1016/S1872-2067(08)60041-8

    16. [16]

      TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. J Am Ceram Soc, 1984,67(6):C119-C121.

    17. [17]

      BARTON D G, SHTEIN M, WILSON R D, SOLED S L, IGLESIA E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures[J]. J Phys Chem B, 1999,103(4):630-640. doi: 10.1021/jp983555d

    18. [18]

      ZHAO B Y, XU X P, MA H R, SUN D H, GAO J M. Monolayer dispersion of oxides and salts on surface of ZrO2 and its application in preparation of ZrO2-supported catalysts with high surface areas[J]. Catal Lett, 1997,45(3/4):237-244. doi: 10.1023/A:1019048503124

    19. [19]

      WANG Chun-ming, ZHAO Bi-ying, XIE You-chang. Advances in the studies of spontaneous monolayer dispersion of oxides and salts on supports[J]. Chin J Catal, 2003,24(6):475-482.  

    20. [20]

      SCHEITHAUER M, GRASSELLI R K, KNÖZINGER H. Genesis and Structure of WOx/ZrO2 Solid Acid Catalysts[J]. Langmuir, 1998,14(11):3019-3029. doi: 10.1021/la971399g

    21. [21]

      JIN T, YAMAGUCHI T, TANABE K. Mechanism of acidity generation on sulfur-promoted metal-oxides[J]. J Phys Chem, 1986,90(20):4794-4796. doi: 10.1021/j100411a017

    22. [22]

      PANAGIOTOPOULOU P, KONDARIDES D I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts[J]. J Catal, 2008,260(1):141-149. doi: 10.1016/j.jcat.2008.09.014

    23. [23]

      TSUCHIYA S, AMENOMIYA Y, CVETANOVI-R J. Study of metal catalysts by temperature programmed desorption. Ⅱ. Chemisorption of hydrogen on platinum[J]. J Catal, 1970,19(3):145-155.

    24. [24]

      KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles[J]. J Phys Chem, 1964,68(2):411-412. doi: 10.1021/j100784a503

    25. [25]

      IGLESIA E, BARTON D G, SOLED S L, MISEO S, BAUMGARTNER J E, GATES W E, FUENTES G A, MEITZNER G D. Selective isomerization of alkanes on supported tungsten oxide acids[J]. Stud Surf Sci Catal, 1996,101:533-542. doi: 10.1016/S0167-2991(96)80264-3

    26. [26]

      SHISHIDO T, HATTORI H. Spillover of hydrogen over zirconium oxide promoted by sulfate ion and platinum[J]. Appl Catal A:Gen, 1996,146(1):157-164. doi: 10.1016/0926-860X(96)00161-5

    27. [27]

      TRIWAHYONO S, YAMADA T, HATTORI H. IR study of acid sites on WO3-ZrO2[J]. Appl Catal A:Gen, 2003,250(1):75-81. doi: 10.1016/S0926-860X(03)00303-X

    28. [28]

      CHEN K, BELL A T, IGLESIA E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions[J]. J Catal, 2002,209(1):35-42. doi: 10.1006/jcat.2002.3620

    29. [29]

      BAERTSCH C D, SOLED S L, IGLESIA E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia[J]. J Phys Chem B, 2001,105(7):1320-1330. doi: 10.1021/jp003073d

    30. [30]

      PRINS R. Hydrogen Spillover. Facts and fiction[J]. Chem Rev, 2012,112(5):2714-2738. doi: 10.1021/cr200346z

  • 加载中
    1. [1]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    2. [2]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    13. [13]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    16. [16]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    19. [19]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

Metrics
  • PDF Downloads(4)
  • Abstract views(706)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return