Citation: Duan Bingya, Wang Tianyuan, Sun Yingfei. Research Progress in Computer Aided Metalloprotein Design and Engineering[J]. Chemistry, ;2019, 82(3): 221-230. shu

Research Progress in Computer Aided Metalloprotein Design and Engineering

Figures(10)

  • Metalloproteins are proteins containing metal ions, they play important roles in biology system due to their special catalytic activity. A lot of study has been done to elucidate their structural and functional mechanism. Based on the active site mimic of existing metalloprotein, artificially designed metalloproteins with specific structure and function can be achieved through computer aided protein design method. In this paper, research progress in computer aided metalloprotein design and engineering was reviewed. The general principle for introducing metal ion binding site and protein activity enhancement was summarized. We also presented current problems and challenges in this field, along with future directions and probable breakthrough point.
  • 加载中
    1. [1]

      X Lu, C Wang, B Liu. Fish Shellfish Immunol., 2015, 42(1):58~65. 

    2. [2]

      T J Erb, J Zarzycki. Curr. Opin. Biotechnol., 2018, 49:100~107. 

    3. [3]

      K D Jackson, R Durandis, M J Vergne. Int. J. Mol. Sci., 2018, 19(8):2367. 

    4. [4]

      E N Mirts, I D Petrik, P Hosseinzadeh et al. Science, 2018, 361(6407):1098~1101. 

    5. [5]

      A D Pearson, J H Mills, Y Song et al. Science, 2015, 347(6224):863~867. 

    6. [6]

      A Chevalier, D A Silva, G J Rocklin et al. Nature, 2017, 550:74~79. 

    7. [7]

      D Rothlisberger, O Khersonsky, A M Wollacott et al. Nature, 2008, 453(7192):190~195. 

    8. [8]

      E Marcos, B Basanta, T M Chidyausiku et al. Science, 2017, 355(6321):201~206. 

    9. [9]

      C E Tinberg, S D Khare, J Dou et al. Nature, 2013, 501(7466):212~216. 

    10. [10]

      K T O'Neil, W F DeGrado. Science, 1990, 250(4981):646~651. 

    11. [11]

      H W Hellinga, J P Caradonna, F M Richards. J. Mol. Biol., 1991, 222(3):787~803. 

    12. [12]

      N D Clarke, S M Yuan. Proteins, 1995, 23(2):256~263.

    13. [13]

      A Leaver-Fay, M Tyka, S M Lewis et al. Methods Enzymol., 2011, 487:545~574. 

    14. [14]

      F Richter, A Leaver-Fay, S D Khare et al. PLoS One, 2011, 6(5):e19230. 

    15. [15]

      D Hilvert. Annu. Rev. Biochem., 2013, 82:447~470. 

    16. [16]

      G R Nosrati, K N Houk. Protein Sci., 2012, 21(5):697~706. 

    17. [17]

      I V Korendovych, D W Kulp, Y Wu et al. PNAS, 2011, 108(17):6823~6827. 

    18. [18]

      L Zhou, M Bosscher, C Zhang et al. Nat. Chem., 2014, 6(3):236~241. 

    19. [19]

      E Bozkurt, M A S Perez, R Hovius et al. J. Am. Chem. Soc., 2018, 140(13):4517~4521. 

    20. [20]

      M Klemba, K H Gardner, S Marino et al. Nat. Struct. Biol., 1995, 2:368~373. 

    21. [21]

      C C Liu, P G Schultz. Annu. Rev. Biochem., 2010, 79:413~444. 

    22. [22]

      L Wang, A Brock, B Herberich et al. Science, 2001, 292(5516):498~500. 

    23. [23]

      I Drienovska, C Mayer, C Dulson et al. Nat. Chem., 2018, 10:946~952. 

    24. [24]

      J Xie, W Liu, P G Schultz. Angew. Chem. Int. Ed., 2007, 46(48):9239~9242. 

    25. [25]

      X Liu, J Li, C Hu et al. Angew. Chem. Int. Ed., 2013, 52(18):4805~4809. 

    26. [26]

      X Liu, J Li, J Dong et al. Angew. Chem. Int. Ed., 2012, 51(41):10261~10265. 

    27. [27]

      X Liu, Y Yu, C Hu et al. Angew. Chem. Int. Ed., 2012, 51(18):4312~4316. 

    28. [28]

      H S Lee, P G Schultz. J. Am. Chem. Soc., 2008, 130(40):13194~13195. 

    29. [29]

      J H Mills, S D Khare, J M Bolduc et al. J. Am. Chem. Soc., 2013, 135(36):13393~13399. 

    30. [30]

      J H Mills, W Sheffler, M E Ener et al. PNAS, 2016, 113(52):15012~15017. 

    31. [31]

      X Luo, T S Wang, Y Zhang et al. Cell. Chem. Biol., 2016, 23(9):1098~1102. 

    32. [32]

      I Drienovska, L Alonso-Cotchico, P Vidossich et al. Chem. Sci., 2017, 8(10):7228~7235. 

    33. [33]

      I Drienovska, A Rioz-Martinez, A Draksharapu et al. Chem. Sci., 2015, 6(1):770~776. 

    34. [34]

      J Bos, W R Browne, A J Driessen et al. J. Am. Chem. Soc., 2015, 137(31):9796~9799. 

    35. [35]

      J Bos, F Fusetti, A J Driessen et al. Angew. Chem. Int. Ed., 2012, 51(30):7472~7475. 

    36. [36]

      G Grigoryan, W F Degrado. J. Mol. Biol., 2011, 405(4):1079~1100. 

    37. [37]

      N R Zaccai, B Chi, A R Thomson et al. Nat. Chem. Biol., 2011, 7(12):935~941. 

    38. [38]

      F Lapenta, J Aupic, Z Strmsek et al. Chem. Soc. Rev., 2018, 47(10):3530~3542. 

    39. [39]

      J Kaplan, W F DeGrado. PNAS, 2004, 101(32):11566~11570. 

    40. [40]

      M Faiella, C Andreozzi, R T de Rosales et al. Nat. Chem. Biol., 2009, 5(12):882~884. 

    41. [41]

      A J Reig, M M Pires, R A Snyder et al. Nat. Chem., 2012, 4(11):900~906. 

    42. [42]

      N H Joh, T Wang, M P Bhate et al. Science, 2014, 346(6216):1520~1524. 

    43. [43]

      G Ulas, T Lemmin, Y Wu et al. Nat. Chem., 2016, 8(4):354~359. 

    44. [44]

      P S Huang, K Feldmeier, F Parmeggiani et al. Nat. Chem. Biol., 2016, 12(1):29~34. 

    45. [45]

      Y R Lin, N Koga, R Tatsumi-Koga et al. PNAS, 2015, 112(40):E5478~E5485. 

    46. [46]

      T J Brunette, F Parmeggiani, P-S Huang et al. Nature, 2015, 528(7583):580~584. 

    47. [47]

      B Dang, H Wu, V K Mulligan et al. PNAS, 2017, 114(41):10852~10857. 

    48. [48]

      R Blomberg, H Kries, D M Pinkas et al. Nature, 2013, 503(7476):418~421. 

    49. [49]

      B Albada, N Metzler-Nolte. Chem. Rev., 2016, 116(19):11797~11839. 

    50. [50]

      A H Cherney, N T Kadunce, S E Reisman. Chem. Rev., 2015, 115(17):9587~9652. 

    51. [51]

      N F Polizzi, Y Wu, T Lemmin et al. Nat. Chem., 2017, 9(12):1157~1164. 

    52. [52]

      G M Bender, A Lehmann, H Zou et al. J. Am. Chem. Soc., 2007, 129(35):10732~10740. 

    53. [53]

      H C Fry, A Lehmann, J G Saven et al. J. Am. Chem. Soc., 2010, 132(11):3997~4005. 

    54. [54]

      H C Fry, A Lehmann, L E Sinks et al. J. Am. Chem. Soc., 2013, 135(37):13914~13926. 

    55. [55]

      T Heinisch, M Pellizzoni, M Duerrenberger et al. J. Am. Chem. Soc., 2015, 137(32):10414~10419. 

    56. [56]

      F W Monnard, E S Nogueira, T Heinisch et al. Chem. Sci., 2013, 4(8):3269~3274. 

    57. [57]

      X Feng, J Ambia, K M Chen et al. Nat. Chem. Biol., 2017, 13(7):715~723. 

    58. [58]

      H J Wijma, R J Floor, S Bjelic et al. Angew. Chem. Int. Ed., 2015, 54(12):3726~3730. 

    59. [59]

      R Li, H J Wijma, L Song et al. Nat. Chem. Biol., 2018:14:664~670.

    60. [60]

      S D Khare, Y Kipnis, P Greisen et al. Nat. Chem. Biol., 2012, 8(3):294~300. 

    61. [61]

      F H Arnold. Angew. Chem. Int. Ed., 2018, 57(16):4143~4148. 

    62. [62]

      P S Coelho, E M Brustad, A Kannan et al. Science, 2013, 339(6117):307~310. 

    63. [63]

      S B J Kan, R D Lewis, K Chen et al. Science, 2016, 354(6315):1048~1051. 

    64. [64]

      S B J Kan, X Huang, Y Gumulya et al. Nature, 2017, 552(7683):132~136. 

    65. [65]

      S C Hammer, G Kubik, E Watkins et al. Science, 2017, 358(6360):215~218. 

    66. [66]

      K Chen, X Huang, S B J Kan et al. Science, 2018, 360(6384):71~75. 

    67. [67]

      K K Yang, Z Wu, C N Bedbrook et al. Bioinformatics, 2018, 34(15):2642~2648. 

    68. [68]

      C N Bedbrook, K K Yang, A J Rice et al. PLoS Comput. Biol., 2017, 13(10):e1005786. 

    69. [69]

      P A Romero, A Krause, F H Arnold. PNAS, 2013, 110(3):E193~E201. 

  • 加载中
    1. [1]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    4. [4]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    5. [5]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    11. [11]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    14. [14]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    15. [15]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    16. [16]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    20. [20]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

Metrics
  • PDF Downloads(18)
  • Abstract views(852)
  • HTML views(242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return