Citation: LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 707-713. shu

Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu

  • Corresponding author: LI Shu-na, lishuna165@126.com YANG Xiao-hui, yangxh1127@aliyun.com
  • Received Date: 6 January 2017
    Revised Date: 11 April 2017

    Fund Project: the Special Natural Science Foundation of Science and Technology Bureau of Xi'an City CXY1531WL21the Natural Science Foundation of Shaanxi Province of China 2016JQ2030the Special Natural Science Foundation of Science and Technology Bureau of Xi'an City CXY1531WL26the National Natural Science Foundation of China 21603173the Natural Science Foundation of Shaanxi Province of China 2016JQ5110the Natural Science Foundation of Shaanxi Province of China 2016JM2015the Special Natural Science Foundation of Science and Technology Bureau of Xi'an City CXY1531WL22the Special Natural Science Foundation of Science and Technology Bureau of Xi'an City CXY1531WL03

Figures(6)

  • A series of ceria oxide catalysts doped with Fe, Ni and Cu were prepared by hydrothermal method and they characterized by N2 sorption, XRD, H2-TPR, Raman spectra and XPS; the relationship between the structure of Ce-M mixed oxides and their catalytic performance in low temperature CO oxidation were then investigated. The results reveal that the incorporation of Fe, Ni and Cu metal ions into CeO2 can remarkably increase the amount of oxygen vacancies in the doped samples, which is beneficial to the migration of the lattice oxygen; as a result, the doped Ce-M mixed oxides exhibit much higher reducibility and catalytic activity than the pure CeO2. Among them, the CeCu catalyst with most oxygen vacancies exhibits the highest activity in CO oxidation, with a complete CO conversion at 130℃; over CeNi catalyst, in the next, a complete CO conversion is obtained at 180℃. On the contrary, CeFe catalyst is least active and the conversion of CO is only 92% at 200℃.
  • 加载中
    1. [1]

      SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A: Gen, 2003,246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2

    2. [2]

      KIM H Y, HENKELMAN G. CO oxidation at the interface between doped CeO2 and supported Au nanoclusters[J]. J Phys Chem Lett, 2012,3(16):2194-2199. doi: 10.1021/jz300631f

    3. [3]

      TANG C J, LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect[J]. Appl Catal A: Gen, 2015,494:77-86. doi: 10.1016/j.apcata.2015.01.037

    4. [4]

      SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008,47(15):2884-2887. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      LI Lan, HU Geng-shen, LU Ji-qing, LUO Meng-fei. Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy[J]. Acta Phys-Chim Sin, 2012,28(5):1012-1020.

    6. [6]

      LIU W, SAROFIM A F, FLYTZANI-STEPHANOPOULOS M. Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts[J]. Appl Catal B: Environ, 1994,4(2/3):167-186.  

    7. [7]

      LAGUNA O H, ROMERO SARRIA F R, CENTENO M A, ODRIOZOLA J A. Gold supported on metal-doped ceria catalysts (M=Zr, Zn and Fe) for the preferential oxidation of CO (PROX)[J]. J Catal, 2010,276(2):360-370. doi: 10.1016/j.jcat.2010.09.027

    8. [8]

      HAN J, KIM H J, YOON S, LEE H. Shape effect of ceria in Cu/ceria catalysts for preferential CO oxidation[J]. J Mol Catal A, 2011,335(1/2):82-88.  

    9. [9]

      LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG WW, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014,144(2):498-506.

    10. [10]

      BAO H Z, CHEN X, FANG J, JIANG Z Q, HUANG W X. Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation[J]. Catal Lett, 2008,125(1):160-167.

    11. [11]

      AVGOUROPOULOS G, IOANNIDES T, MATRALIS H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Appl Catal B: Environ, 2005,56(1/2):87-93.  

    12. [12]

      PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming[J]. Appl Catal B: Environ, 2007,69(3/4):226-234.  

    13. [13]

      LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources, 2011,196(22):9590-9598. doi: 10.1016/j.jpowsour.2011.07.052

    14. [14]

      MAHAMMADUNNISA S, MANOJ KUMAR REDDY P, LINGAIAH N, SUBRAHMANYAM C H. NiO/Ce1-xNixO2-δ as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol, 2013,3(3):730-736. doi: 10.1039/C2CY20641B

    15. [15]

      LLIEVA L, PANTALEO G, IVANOV I, MEXIMOVA A, ZANELLA R, KASZKUR Z, VENEZIA A M, ANDREEVA D. Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant[J]. Catal Today, 2010,158(1/2):44-55.  

    16. [16]

      YAN Dong-xia, WANG Hua, LI Kong-zhai, WEI Yong-gang, ZHU Xing, CHENG Xian-ming. Structure and catalytic property of Ce1-xFexO2 mixed oxide catalysts for low temperature soot combustion[J]. Acta Phys-Chim Sin, 2010,26(2):331-337.

    17. [17]

      LIU Y M, WANG L C, CHEN M, XU J, CAO Y, HE H Y, FAN K N. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane[J]. Catal Lett, 2009,130(3):350-354.  

    18. [18]

      SI R, RAITANO J, YI N, ZHANG L H, CHAN S W, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012,180(1):68-80. doi: 10.1016/j.cattod.2011.09.008

    19. [19]

      ZHENG Xiu-cheng, ZHANG Xiao-li, WANG Shu-rong, YU Li-hua, WANG Xiang-yu, WU Shi-hua. Low-temperature CO oxidation over different CuO/CeO2 catalysts[J]. Chin J Catal, 2005,26(11):971-976. doi: 10.3321/j.issn:0253-9837.2005.11.010

    20. [20]

      FRANCISCO M S P, MASTRLARO V R, NASCENTE P A P, FLORENTINO A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts[J]. J Phys Chem B, 2001,105(43):10515-10522. doi: 10.1021/jp0109675

    21. [21]

      REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Structural characterization of CeO2-MO2 (M = Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. J Phys Chem B, 2003,107(41):11475-11484. doi: 10.1021/jp0358376

    22. [22]

      LAGUNA O H, CENTENO M A, ARZAMENDI G, GANDÍA L M, ROMERO-SARRIA F, ODRIOZOLA J A. Iron-modified ceria and Au/ceria catalysts for total and preferential oxidation of CO (TOX and PROX)[J]. Catal Today, 2010,157(1/4):155-159.  

    23. [23]

      HERNÁNDEZ W Y, CENTENO M A, ROMERO-SARRIA F, ODRIOZOLA J A. Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation[J]. J Phys Chem C, 2009,113(14):5629-5635. doi: 10.1021/jp8092989

    24. [24]

      QIAN K, LV S S, XIAOX Y, SUNH X, LU J Q, LUO M F, HUANG W X. Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation[J]. J Mol Catal A, 2009,306(1/2):40-47.

    25. [25]

      BÊCHE E, CHARVIN P, PEREARNAU D, ABANADES S, FLAMANT G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surf Interface Anal, 2008,40(3/4):264-267.

    26. [26]

      ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011,257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108

  • 加载中
    1. [1]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    7. [7]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    10. [10]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    13. [13]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    16. [16]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(11)
  • Abstract views(1699)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return