Citation: PENG Shu-jing, WANG Jian-zhong, TANG Li-dan, TANG Ke. Preparation of CoMo/γ-Al2O3 catalyst for hydrodesulfurization by impregnation with pulsed electromagnetic fields[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1498-1504. shu

Preparation of CoMo/γ-Al2O3 catalyst for hydrodesulfurization by impregnation with pulsed electromagnetic fields

  • Corresponding author: PENG Shu-jing, pengshujing1982@163.com
  • Received Date: 12 June 2018
    Revised Date: 8 October 2018

    Fund Project: the Program for Liaoning Innovative Research Team in University LT2013014the Natural Science Foundation of Liaoning Province 201202096The project was supported by the Natural Science Foundation of Liaoning Province (201202096), the Program for Liaoning Innovative Research Team in University (LT2013014) and the Foundation Department of Education of Liaoning Province (L2015236)the Foundation Department of Education of Liaoning Province L2015236

Figures(4)

  • CoMo/γ-Al2O3 catalyst for hydrodesulfurization (HDS) were prepared by equal volume impregnation method with and without the presence of pulsed electronmagnetic field (PEMF). Experimental results revealed that the catalyst prepared by PEMF with a voltage of 200 V exhibited higher catalytic activity for hydrodesulfurization of thiophene, 2-methythiophene and benzothiophene than the catalyst prepared by conventional impregnation. The surface morphology and physico-chemical properties were characterized by using BET, XRD, H2-TPR and TEM techniques, respectively. The results showed that appropriate PEMF treatment promotes the active component dispersion on the γ-Al2O3 surface by interacting with the charged particles in reaction system. The interaction between the support and the active species MoO3 is weakened and thus facilitates the reduction of the catalyst and the formation of CoMoS active phase.
  • 加载中
    1. [1]

      LIU Li, GUO Rong, SUN Jin, DING Li, YANG Cheng-min, DUAN Wei-yu, YAO Yun-hai. The research development of diesel hydrodesulfurization catalysts[J]. Chem Ind Eng Prog, 2016,35(11):3503-3510.  

    2. [2]

      LI Cui-qing, PAN Ya-mei, LI Ji-wen, WANG Hong, JIN Guang-zhou, SUN Gui-da. Performance of dibenzothiophene hydrodesulfurization for WP/MCM-41 catalyst containing promoter nickel[J]. J Fuel Chem Technol, 2011,39(12):930-935. doi: 10.3969/j.issn.0253-2409.2011.12.009 

    3. [3]

      ASADI A A, ALAVI S M, ROYAEE S J, BAZMI M. Ultradeep hydrodesulfurization of feedstock containing cracked gasoil through NiMo/γ-Al2O3 catalyst pore size optimization[J]. Energy Fuels, 2018,32(2):2203-2212.  

    4. [4]

      WANG Hai-tao, XU Xue-jun, WANG Ji-feng, LIU Dong-xiang, FENG Xiao-ping. Effects of tungsten, molybdenum and nickel content change on physicochemical properties and hydrogenation activity of bulk catalysts[J]. J Fuel Chem Technol, 2018,46(3):337-345. doi: 10.3969/j.issn.0253-2409.2018.03.011 

    5. [5]

      CHEN Mao-sen, SONG Hua, LI Feng, CHEN Yan-guang, ZHANG Jian. Effects of preparation method on the structure of rare earth metal Y modified Ni2P catalysts and its HDS performance[J]. J Fuel Chem Technol, 2017,45(2):213-219. doi: 10.3969/j.issn.0253-2409.2017.02.011 

    6. [6]

      ABRAHAMSON J P, WINCEK R T, ESER S. Effects of catalyst properties on hydrodesulfurization activity for sulfur removal from fluid catalytic cracking decant oils[J]. Energy Fuels, 2016,30(9):7173-7179. doi: 10.1021/acs.energyfuels.6b01441

    7. [7]

      PANG Wei-wei. Study of support affection on catalysts in HDS of middle distillate oil[D]. Beijing: China University of Petroleum, 2008. 

    8. [8]

      ZENG Yong-kang, ZENG Li-hui, PAN Li-juan, YANG Qiao-sen, WEN Yong-zhong, ZHANG Zhi-xiang. Preparation of supported Pd/Al2O3 catalysts by ultrasonic impregnation and their catalytic performance for nitrobenzene hydrogenation[J]. Rare Metal Mater Eng, 2008,37(4):674-676. doi: 10.3321/j.issn:1002-185X.2008.04.025

    9. [9]

      LIU Xue-fen, ZHANG Le, SHI Ya-hua, NIE Hong, LONG Xiang-yun. Preparation of NiW/Al2O3 hydrodesulfurization catalyst by ultrasound-microwave treatment[J]. Chin J Catal, 2004,25(9):748-752. doi: 10.3321/j.issn:0253-9837.2004.09.016

    10. [10]

      GROBAS J, CARMELO BOLIVAR A, SCOTT C E. Hydrodesulfurization of benzothiophene and hydrogenation of cyclohexene, biphenyl, and quinoline, assisted by ultrasound, using formic acid as hydrogen prcursor[J]. Energy Fuels, 2007,21(1):19-22. doi: 10.1021/ef0603939

    11. [11]

      LIU Wen-jie, ZHANG Qing-jun, SUI Bao-kuan, YUAN Sheng-hua. Study of microwave-assisted dual functional residue hydrogenation catalysi[J]. Pet Process Petrochem, 2016,47(9):57-61. doi: 10.3969/j.issn.1005-2399.2016.09.011

    12. [12]

      GAN Dan-dan. Synthesis of different crystal structures of alumina and the hydrodesulfurization performance of the corresponding catalyst. Beijing: China University of Petroleum, 2016.

    13. [13]

      BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, CHEN Zhong-yi. Solidified microstructure evolution of 7A04 alloy under surface electromagnetic pulse treatment[J]. Mater Rev, 2018,32(6):2021-2027.  

    14. [14]

      DU H, WANG J, WANG B, CANG D. Preparation of cobalt oxalate powders with the presence of a pulsed electromagnetic field[J]. Powder Technol, 2010,199(2):149-153. doi: 10.1016/j.powtec.2009.12.015

    15. [15]

      PENG Shu-jing, TANG Li-dan, WANG Bing, WANG Jian-zhong, LIN Jing. Effect of pulsed electromagnetic field on the morphology and power size during nickel oxalate salt produced by wet chemical method[J]. Chin J Mater Res, 2017,31(12):947-954. doi: 10.11901/1005.3093.2017.161

    16. [16]

      MICHÈLE B, GÉRALD D M, STÉPHANIE P, GEANTET C, VRINAT M, PÉROT G, LEMAIRE M. Deep desulfurization:Reactions, catalysts and technological challenges[J]. Catal Today, 2003,84:129-138. doi: 10.1016/S0920-5861(03)00266-9

    17. [17]

      SAKASHITA Y. Effects of surface orientation and crystallinity of alumina supports on the microstructures of molybdenum oxides and sulfides[J]. Surf Sci, 2001,489(1/3):45-48.  

    18. [18]

      LI Zi-xia, CHANG Xiao-xin, SUN Wei. Research of hydrodesulfurization acitivity of FCC gasoline on CoMo/Al2O3 catalysits[J]. Comput Appl Chem, 2016,33(8):920-924.  

    19. [19]

      HU Ya-jie, XU Liu-jie, ZHOU Yu-cheng, LI Ji-wen, LIU Wei, WEI Shi-zhong. Preparation of molybdenum alloy doped Al2O3 by hydrothermal synthesis method[J]. Trans Mater Heat Treat, 2015,36(6):15-20.  

    20. [20]

      KALUŽA L, ZDRAŽIL M. Relative activity of niobia-supported CoMo hydrodesulphurization catalyst prepared with NTA:A kinetic approach[J]. Catal Commun, 2018,107:62-67. doi: 10.1016/j.catcom.2018.01.020

    21. [21]

      OKAMOTO Y, OCHIAI K, KAWANO M, KOBAYASHI K, KUBOTA T. Effects of supports on the activity of Co-Mo sulfide model catalysts[J]. Appl Catal A:Gen, 2002,226:115-127. doi: 10.1016/S0926-860X(01)00893-6

    22. [22]

      ZHOU Tong-na, YIN Hai-liang, LIU Yun-qi, HAN Shu-na, CHAI Yong-mign, LIU Chen-guang. Effects of phosphorus content on the active phase structure of NiMo/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2010,38(1):69-74. doi: 10.3969/j.issn.0253-2409.2010.01.013 

    23. [23]

      REARDON J, DATYE A K, SAULT A G. Tailoring alumina surface chemistry for efficient use of supported MoS2[J]. J Catal, 1998,173(1):145-156.  

    24. [24]

      LI P, CHEN Y, ZHANG C, HUANG B, LIU X, LIU T, JIANG Z, LI C. Highly selective hydrodesulfuization of gasoline on unsupported Co-Mo sulfide catalysts:Effect of MoS2 morphology[J]. Appl Catal A:Gen, 2017,533:99-108. doi: 10.1016/j.apcata.2017.01.009

    25. [25]

      SHI Er-wei. Hydrothermal Crystallization[M]. Beijing:Science Press, 2004.

    26. [26]

      OKAMOTO Y, KAWANO M, KAWABATA T, KUBOTA T, HIROMITSU I. Structure of the active sites of Co-Mo hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption[J]. J Phys Chem B, 2005,109(1):288-296.  

    27. [27]

      DONPHAI W, PIRIYAWATE N, WITOON T, JANTARATANA P, VARABUNTOONVIT V, CHAREONPANICH M. Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reaction[J]. J CO2 Util, 2016,16:204-211. doi: 10.1016/j.jcou.2016.07.007

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

Metrics
  • PDF Downloads(10)
  • Abstract views(1060)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return