Citation: PENG Shu-jing, WANG Jian-zhong, TANG Li-dan, TANG Ke. Preparation of CoMo/γ-Al2O3 catalyst for hydrodesulfurization by impregnation with pulsed electromagnetic fields[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1498-1504. shu

Preparation of CoMo/γ-Al2O3 catalyst for hydrodesulfurization by impregnation with pulsed electromagnetic fields

  • Corresponding author: PENG Shu-jing, pengshujing1982@163.com
  • Received Date: 12 June 2018
    Revised Date: 8 October 2018

    Fund Project: the Program for Liaoning Innovative Research Team in University LT2013014the Natural Science Foundation of Liaoning Province 201202096The project was supported by the Natural Science Foundation of Liaoning Province (201202096), the Program for Liaoning Innovative Research Team in University (LT2013014) and the Foundation Department of Education of Liaoning Province (L2015236)the Foundation Department of Education of Liaoning Province L2015236

Figures(4)

  • CoMo/γ-Al2O3 catalyst for hydrodesulfurization (HDS) were prepared by equal volume impregnation method with and without the presence of pulsed electronmagnetic field (PEMF). Experimental results revealed that the catalyst prepared by PEMF with a voltage of 200 V exhibited higher catalytic activity for hydrodesulfurization of thiophene, 2-methythiophene and benzothiophene than the catalyst prepared by conventional impregnation. The surface morphology and physico-chemical properties were characterized by using BET, XRD, H2-TPR and TEM techniques, respectively. The results showed that appropriate PEMF treatment promotes the active component dispersion on the γ-Al2O3 surface by interacting with the charged particles in reaction system. The interaction between the support and the active species MoO3 is weakened and thus facilitates the reduction of the catalyst and the formation of CoMoS active phase.
  • 加载中
    1. [1]

      LIU Li, GUO Rong, SUN Jin, DING Li, YANG Cheng-min, DUAN Wei-yu, YAO Yun-hai. The research development of diesel hydrodesulfurization catalysts[J]. Chem Ind Eng Prog, 2016,35(11):3503-3510.  

    2. [2]

      LI Cui-qing, PAN Ya-mei, LI Ji-wen, WANG Hong, JIN Guang-zhou, SUN Gui-da. Performance of dibenzothiophene hydrodesulfurization for WP/MCM-41 catalyst containing promoter nickel[J]. J Fuel Chem Technol, 2011,39(12):930-935. doi: 10.3969/j.issn.0253-2409.2011.12.009 

    3. [3]

      ASADI A A, ALAVI S M, ROYAEE S J, BAZMI M. Ultradeep hydrodesulfurization of feedstock containing cracked gasoil through NiMo/γ-Al2O3 catalyst pore size optimization[J]. Energy Fuels, 2018,32(2):2203-2212.  

    4. [4]

      WANG Hai-tao, XU Xue-jun, WANG Ji-feng, LIU Dong-xiang, FENG Xiao-ping. Effects of tungsten, molybdenum and nickel content change on physicochemical properties and hydrogenation activity of bulk catalysts[J]. J Fuel Chem Technol, 2018,46(3):337-345. doi: 10.3969/j.issn.0253-2409.2018.03.011 

    5. [5]

      CHEN Mao-sen, SONG Hua, LI Feng, CHEN Yan-guang, ZHANG Jian. Effects of preparation method on the structure of rare earth metal Y modified Ni2P catalysts and its HDS performance[J]. J Fuel Chem Technol, 2017,45(2):213-219. doi: 10.3969/j.issn.0253-2409.2017.02.011 

    6. [6]

      ABRAHAMSON J P, WINCEK R T, ESER S. Effects of catalyst properties on hydrodesulfurization activity for sulfur removal from fluid catalytic cracking decant oils[J]. Energy Fuels, 2016,30(9):7173-7179. doi: 10.1021/acs.energyfuels.6b01441

    7. [7]

      PANG Wei-wei. Study of support affection on catalysts in HDS of middle distillate oil[D]. Beijing: China University of Petroleum, 2008. 

    8. [8]

      ZENG Yong-kang, ZENG Li-hui, PAN Li-juan, YANG Qiao-sen, WEN Yong-zhong, ZHANG Zhi-xiang. Preparation of supported Pd/Al2O3 catalysts by ultrasonic impregnation and their catalytic performance for nitrobenzene hydrogenation[J]. Rare Metal Mater Eng, 2008,37(4):674-676. doi: 10.3321/j.issn:1002-185X.2008.04.025

    9. [9]

      LIU Xue-fen, ZHANG Le, SHI Ya-hua, NIE Hong, LONG Xiang-yun. Preparation of NiW/Al2O3 hydrodesulfurization catalyst by ultrasound-microwave treatment[J]. Chin J Catal, 2004,25(9):748-752. doi: 10.3321/j.issn:0253-9837.2004.09.016

    10. [10]

      GROBAS J, CARMELO BOLIVAR A, SCOTT C E. Hydrodesulfurization of benzothiophene and hydrogenation of cyclohexene, biphenyl, and quinoline, assisted by ultrasound, using formic acid as hydrogen prcursor[J]. Energy Fuels, 2007,21(1):19-22. doi: 10.1021/ef0603939

    11. [11]

      LIU Wen-jie, ZHANG Qing-jun, SUI Bao-kuan, YUAN Sheng-hua. Study of microwave-assisted dual functional residue hydrogenation catalysi[J]. Pet Process Petrochem, 2016,47(9):57-61. doi: 10.3969/j.issn.1005-2399.2016.09.011

    12. [12]

      GAN Dan-dan. Synthesis of different crystal structures of alumina and the hydrodesulfurization performance of the corresponding catalyst. Beijing: China University of Petroleum, 2016.

    13. [13]

      BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, CHEN Zhong-yi. Solidified microstructure evolution of 7A04 alloy under surface electromagnetic pulse treatment[J]. Mater Rev, 2018,32(6):2021-2027.  

    14. [14]

      DU H, WANG J, WANG B, CANG D. Preparation of cobalt oxalate powders with the presence of a pulsed electromagnetic field[J]. Powder Technol, 2010,199(2):149-153. doi: 10.1016/j.powtec.2009.12.015

    15. [15]

      PENG Shu-jing, TANG Li-dan, WANG Bing, WANG Jian-zhong, LIN Jing. Effect of pulsed electromagnetic field on the morphology and power size during nickel oxalate salt produced by wet chemical method[J]. Chin J Mater Res, 2017,31(12):947-954. doi: 10.11901/1005.3093.2017.161

    16. [16]

      MICHÈLE B, GÉRALD D M, STÉPHANIE P, GEANTET C, VRINAT M, PÉROT G, LEMAIRE M. Deep desulfurization:Reactions, catalysts and technological challenges[J]. Catal Today, 2003,84:129-138. doi: 10.1016/S0920-5861(03)00266-9

    17. [17]

      SAKASHITA Y. Effects of surface orientation and crystallinity of alumina supports on the microstructures of molybdenum oxides and sulfides[J]. Surf Sci, 2001,489(1/3):45-48.  

    18. [18]

      LI Zi-xia, CHANG Xiao-xin, SUN Wei. Research of hydrodesulfurization acitivity of FCC gasoline on CoMo/Al2O3 catalysits[J]. Comput Appl Chem, 2016,33(8):920-924.  

    19. [19]

      HU Ya-jie, XU Liu-jie, ZHOU Yu-cheng, LI Ji-wen, LIU Wei, WEI Shi-zhong. Preparation of molybdenum alloy doped Al2O3 by hydrothermal synthesis method[J]. Trans Mater Heat Treat, 2015,36(6):15-20.  

    20. [20]

      KALUŽA L, ZDRAŽIL M. Relative activity of niobia-supported CoMo hydrodesulphurization catalyst prepared with NTA:A kinetic approach[J]. Catal Commun, 2018,107:62-67. doi: 10.1016/j.catcom.2018.01.020

    21. [21]

      OKAMOTO Y, OCHIAI K, KAWANO M, KOBAYASHI K, KUBOTA T. Effects of supports on the activity of Co-Mo sulfide model catalysts[J]. Appl Catal A:Gen, 2002,226:115-127. doi: 10.1016/S0926-860X(01)00893-6

    22. [22]

      ZHOU Tong-na, YIN Hai-liang, LIU Yun-qi, HAN Shu-na, CHAI Yong-mign, LIU Chen-guang. Effects of phosphorus content on the active phase structure of NiMo/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2010,38(1):69-74. doi: 10.3969/j.issn.0253-2409.2010.01.013 

    23. [23]

      REARDON J, DATYE A K, SAULT A G. Tailoring alumina surface chemistry for efficient use of supported MoS2[J]. J Catal, 1998,173(1):145-156.  

    24. [24]

      LI P, CHEN Y, ZHANG C, HUANG B, LIU X, LIU T, JIANG Z, LI C. Highly selective hydrodesulfuization of gasoline on unsupported Co-Mo sulfide catalysts:Effect of MoS2 morphology[J]. Appl Catal A:Gen, 2017,533:99-108. doi: 10.1016/j.apcata.2017.01.009

    25. [25]

      SHI Er-wei. Hydrothermal Crystallization[M]. Beijing:Science Press, 2004.

    26. [26]

      OKAMOTO Y, KAWANO M, KAWABATA T, KUBOTA T, HIROMITSU I. Structure of the active sites of Co-Mo hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption[J]. J Phys Chem B, 2005,109(1):288-296.  

    27. [27]

      DONPHAI W, PIRIYAWATE N, WITOON T, JANTARATANA P, VARABUNTOONVIT V, CHAREONPANICH M. Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reaction[J]. J CO2 Util, 2016,16:204-211. doi: 10.1016/j.jcou.2016.07.007

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(10)
  • Abstract views(1018)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return