Citation: XU Yan-zhao, XU Long-jun, HU Jin-feng. Effects of anode modification on the performance of single chamber microbial fuel cells[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 600-606. shu

Effects of anode modification on the performance of single chamber microbial fuel cells

  • Corresponding author: XU Long-jun, xulj@cqu.edu.cn
  • Received Date: 19 November 2017
    Revised Date: 18 March 2018

    Fund Project: The project was supported by the Key Projects of Basic and Frontier Research Projects in Chongqing(CSTC, 2013jjB20001 and CSTC, 2015jcyjBX0015)the Key Projects of Basic and Frontier Research Projects in Chongqing 2013jjB20001the Key Projects of Basic and Frontier Research Projects in Chongqing 2015jcyjBX0015

Figures(8)

  • An air-cathode single-chamber microbial fuel cells were constructed using the aging landfill leachate as substrate to study the influence of different anode modifications on microbial fuel cell performance in terms of the electricity productivity and the effects on the treatment of aging landfill leachate. After the carbon felt anode modification separately with heating, concentrated nitric acid, acidic potassium dichromate and mixed acid, the maximum output power density of cells increases by 104%, 241%, 51%, and 181%, respectively, and the removal of ammonia increases by 22.2%, 21.8%, 2.3% and 47.3%, respectively, while the removal efficiency of COD is improved less. As the pH value of landfill leachate increases, the conductivity decreases.
  • 加载中
    1. [1]

      GU Yi-yun. Output power and its influence factors of microbial fuel cells:A review[J]. Hydropower New Energy, 2014(2):69-74.  

    2. [2]

      ZHONG Deng-jie, LIU Ya-qi, LIAO Xin-rong, XU Yun-lan. Research progress in anodes modified by metals and metal compounds for microbial fuel cells[J]. Environ Chem, 2017,36(7):1636-1647. doi: 10.7524/j.issn.0254-6108.2017.07.2016111005

    3. [3]

      FAN Y, SHARBROUGH E, LIU H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environ Sci Technol, 2008,42(21):8101-8107. doi: 10.1021/es801229j

    4. [4]

      SARATHI V S, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Bios Bioelectron, 2013,43:461-475. doi: 10.1016/j.bios.2012.12.048

    5. [5]

      OLIVEIRA V, SIMÕES M, MELO L, PINTO A. Overview on the developments of microbial fuel cells[J]. Bioch Eng J, 2013,73:53-64. doi: 10.1016/j.bej.2013.01.012

    6. [6]

      DEWAN A, BEYENAL H, LEWANDOWSKI Z. Scaling up microbial fuel cells[J]. Environ Sci Technol, 2008,42(20):7643-7648. doi: 10.1021/es800775d

    7. [7]

      ZHANG X, CHENG S, WANG X, HUANG X, LOGAN B E. Separator characteristics for increasing performance of microbial fuel cells[J]. Environ Sci Technol, 2009,43(21):8456-8461. doi: 10.1021/es901631p

    8. [8]

      AELTERMAN P, VERSICHELE M, MARZORATI M, BOON N, VERSTRAETE W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes[J]. Biores Technol, 2008,99(18):8895-8902. doi: 10.1016/j.biortech.2008.04.061

    9. [9]

      LOGAN B, CHENG S, WATSON V, ESTADT G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environ Sci Technol, 2007,41(9):3341-3346. doi: 10.1021/es062644y

    10. [10]

      LIU Chun-mei, LIU Lei. Research progress of anode materials in microbial fuel cells[J]. New Chem Mater, 2015,43(10):22-23.  

    11. [11]

      FENG Y, YANG Q, WANG X, LOGAN B E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. J Power Sources, 2010,195(7):1841-1844. doi: 10.1016/j.jpowsour.2009.10.030

    12. [12]

      ZHU N, CHEN X, ZHANG T, WU P, LI P, WU J. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technol, 2011,102(1):422-426. doi: 10.1016/j.biortech.2010.06.046

    13. [13]

      LIU W, CHENG S, GUO J. Anode modification with formic acid:A simple and effective method to improve the power generation of microbial fuel cells[J]. Appl Surf Sci, 2014,320:281-286. doi: 10.1016/j.apsusc.2014.09.088

    14. [14]

      MA Z, SONG H, STOLL Z A, XU P. Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells[J]. J Energy Chem, 2017,26(1):81-86. doi: 10.1016/j.jechem.2016.11.020

    15. [15]

      PENG Xin-hong, YU Hong-bin, WANG Xin, LI Yong. Effect of carbon felt surface modification on performance in microbial fuel cell[J]. Chin J Environ Eng, 2013,10:4139-4143.  

    16. [16]

      CHENG S, LIU H, LOGAN B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environ Sci Technol, 2006,40(1):364-369. doi: 10.1021/es0512071

    17. [17]

      LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environ Sci Technol, 2004,38(14):4040-4046. doi: 10.1021/es0499344

    18. [18]

      LIANG Peng, FAN Ming-zhi, CAO Xiao-xin, HUANG Xia, WANG Cheng. Composition and measurement of the apparent internal resistance in microbial fuel cell[J]. Environ Sci, 2007,28(8):1894-1898.  

    19. [19]

      ZHOU Yu, LIU Zhong-liang, HOU Jun-xian, YANG Si-qi, LI Yan-xia, QIU Wen-ge. Microbial fuel cell anode modified by chemical oxidation[J]. CIECS J, 2014,66(3):1171-1177.  

    20. [20]

      LI Jian-hai. Research of anode surface modification and electrode shape in the benthic sediment microbial fuel cell[D]. Qindao: Ocean University of China, 2010.

    21. [21]

      ERABLE B, DUTEANU N, KUMAR S S, FENG Y, GHANGREKAR M M, SCOTT K. Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications[J]. Electrochem Commun, 2009,11(7):1547-1549. doi: 10.1016/j.elecom.2009.05.057

    22. [22]

      WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate[J]. J Chem Technol, 2017,45(9):1146-1152.  

    23. [23]

      JIA Bin, LIU Zhi-hua, LI Xiao-ming, YANG Yong-lin, YANG Qi, ZENG Guang-ming. Electricity production from surplus sludge using microbial fuel cell[J]. Environ Sci, 2009,30(4):1227-1231.  

    24. [24]

      YU ling-yin. Treament of the aging landfill leachate using membrane-less air cathode single-chamber microbial fuel cells[D]. Chongqing: Chongqing University, 2016. 

    25. [25]

      FAN Fang-zhou, ZHAI Hong-yan, JI Ming. Progress in microbial fuel cell for decontamination and power generation[J]. Mod Chem Ind, 2015(12):19-23.  

    26. [26]

      CUI Long-tao, ZUO Jian-e, FAN Ming-zhi. A microbial fuel cell producing electricity directly from municipal wastewater treatment[J]. Chin Biog, 2006,24(4):3-5.  

    27. [27]

      TARTAKOVSKY B, GUIOT S R. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors[J]. Biotechnol Prog, 2006,22(1):241-246. doi: 10.1021/bp050225j

    28. [28]

      KIM J R, ZUO Y, REGAN J M, LOGAN B E. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater[J]. Biotechnol Bioeng, 2008,99(5):1120-1127. doi: 10.1002/(ISSN)1097-0290

  • 加载中
    1. [1]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(11)
  • Abstract views(968)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return