Citation: WANG Kang-zhou, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, ZHAO Tian-sheng. Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1376-1383. shu

Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins

  • Corresponding author: FAN Su-bing, zhaots@nxu.edu.cn ZHAO Tian-sheng, fansb@nxu.edu.cn
  • Received Date: 30 June 2017
    Revised Date: 25 August 2017

    Fund Project: Graduate Innovation Program of Ningxia University GIP2017024The project was supported by the National Natural Science Foundation of China (21563024) and Graduate Innovation Program of Ningxia University (GIP2017024)the National Natural Science Foundation of China 21563024

Figures(9)

  • HZSM-5(core)/SAPO-11(shell) composite molecular sieves were hydrothermally synthesized by crystallization of SAPO-11 outside HZSM-5 surface. After loading 10% Cr2O3, the pore distribution, acidity, and catalytic activity of the composite supported Cr2O3 in the transformation of liquefied petroleum gas (LPG) to ethene and propene were investigated. The results showed the HZSM-5 surface was coated with SAPO-11 microcrystalline of different thicknesses. With the increase of crystallization time, the shell thickness of the composite molecular sieves is increased; the mesoporosity and acidity can then be regulated by controlling the shell thickness. The composite supported Cr2O3 exhibits superior activity in the transformation of LPG to olefins than the single molecular sieves or mechanically mixed ones. The Cr2O3 catalyst supported on the composite by crystallization for 12 h gives the highest activity and selectivity to the target products; the feed conversion and the selectivity to ethene and propene are 42.63% and 65.89%, respectively, while the selectivities to CH4 and C5+ are 6.32% and 15.48%, respectively.
  • 加载中
    1. [1]

      JIN Yu-hao, REN Wen-po. Methanol to olefins will become the future olefins market mainstream of China[J]. Chin Pet Chem Ind, 2017,1:31-33.  

    2. [2]

      DING Jun-yu. Status and development environment of China's CTL industry[J]. Int Pet Econ, 2017,25(4):45-49.  

    3. [3]

      A-Gu-da-mu , SUN Yong, ZHANG Fei-yue. Discussion on product distribution of methanol to propylene in shenhua ningxia coal[J]. Coal Chem Ind, 2013,1:58-60. doi: 10.3969/j.issn.1005-9598.2013.01.017

    4. [4]

      HOU Qing-he, YANG Jing-hua. Liquefied petroleum gas resources and their comprehensive utilization[J]. Contemp Chem Ind, 2010,39(3):287-289.  

    5. [5]

      HAJHEIDARY M, GHASHGHAEE M, KARIMZADEH R. Olefins production from LPG via dehydrogenative cracking over three ZSM-5 catalysts[J]. J Sci Ind Res, 2013,72:760-766.  

    6. [6]

      WANG Jiu-chang, ZHANG Guo-liang, HAO Dai-jun. Advances in comprehensive utilization of liquefied petroleum gas[J]. Refin Technol Eng, 2009,39(10):1-6. doi: 10.3969/j.issn.1002-106X.2009.10.001

    7. [7]

      RAHIMI N, MORADI D, SHEIBAK M, MOOSAVI E, KARIMZADEH R. The influence of modification methods on the catalytic cracking of LPG over lanthanum and phosphorus modified HZSM-5 catalysts[J]. Microporous Mesoporous Mater, 2016,234:215-223. doi: 10.1016/j.micromeso.2016.07.010

    8. [8]

      VAFI L, KARIMZADEH R. A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG:Catalyst modification by dealumination and subsequent silicon loading[J]. Chin J Catal, 2016,37:628-635. doi: 10.1016/S1872-2067(15)61062-2

    9. [9]

      VAFI L, KARIMZADEH R. LPG catalytic cracking over the modified ZSM-5 by activated carbon and carbon nanotube templates:Synthesis, morphology and performance of catalysts[J]. J Nat Gas Sci Eng, 2016,32:1-9. doi: 10.1016/j.jngse.2016.04.032

    10. [10]

      KUMAR S M, HAMMER N, RØNNING M, HOLMEN A, CHEN D, WALMSLEY J C, ØYE G. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane:New insights by a comprehensive spectroscopic study[J]. J Catal, 2009,261:116-128. doi: 10.1016/j.jcat.2008.11.014

    11. [11]

      ZHANG P Q, GUO X W, GUO H C, WANG X S. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J Mol Catal A:Chem, 2007,261:139-146. doi: 10.1016/j.molcata.2006.08.012

    12. [12]

      ZHAO G L, TENG J W, XIE Z K, JIN W Q, YANG W M, CHEN Q L, TANG Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. J Catal, 2007,248:29-37. doi: 10.1016/j.jcat.2007.02.027

    13. [13]

      KUBO K, IIDA H, NAMBA S, IGARASHI A. Comparison of steaming stability of Cu-ZSM-5 with those of Ag-ZSM-5, P/H-ZSM-5, and H-ZSM-5 zeolites as naphtha cracking catalysts to produce light olefin at high temperatures[J]. Appl Catal A:Gen, 2015,489:272-279. doi: 10.1016/j.apcata.2014.10.041

    14. [14]

      HOU X, QIU Y, ZHANG X, LIU G. Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins[J]. Chem Eng J, 2017,307:372-381. doi: 10.1016/j.cej.2016.08.047

    15. [15]

      WANG Cui, ZHANG Rui-zhen, XING Pu, WEN Shao-bo, ZHAO Ling-ling, GUO Duan-yang, ZHAO Liang-fu. Effect of alkali treatment and Zn modification on catalytic performance of HZSM-5 for LPG aromatization[J]. Nat Gas Chem Ind, 2015,40(6):13-17.  

    16. [16]

      CAEIRO G, CARVALHO R H, WANG X, LEMOS M A N D A, LEMOS F, GUISNET M, RIBEIRO R F. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. J Mol Catal A:Chem, 2006,255:131-158. doi: 10.1016/j.molcata.2006.03.068

    17. [17]

      ZHU Q, KONDO J N., SETOYAMA T, YAMAGUCHI M, DOMENC K, TATSUMI T. Activation of hydrocarbons on acidic zeolites:superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem. Commun., 2008:5164-5166.  

    18. [18]

      WUO W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011,66:4722-4732. doi: 10.1016/j.ces.2011.06.036

    19. [19]

      ZHAN Jin-you, ZHANG Lu-lu, SUN Yao, SHEN Jian. Modified ZSM-5-SBA-15 and its alkylation performance for toluene with methanol[J]. J Fuel Chem Technol, 2016,44(4):489-494.  

    20. [20]

      FAN S, ZHOU J, LV J, LIU M, HUANG H, ZHANG J, ZHAO T S. Composite HZSM-5 with nanosheets for higher light olefin selectivity and longer lifetime in catalytic cracking mixed light hydrocarbons[J]. Chem Lett, 2015,44:1697-1699. doi: 10.1246/cl.150816

    21. [21]

      KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites:A short review[J]. Chin J Catal, 2016,37:447-467. doi: 10.1016/S1872-2067(15)61038-5

    22. [22]

      LV Jiang-jiang, HUANG Xing-liang, ZHAO Lei-lei, SUN Ren-shan, HU Long-wang, GONG Yan. Effects of acid-alkali treatment on properties and reactivity of ZSM-5 catalyst[J]. J Fuel Chem Technol, 2016,44(6):732-737.  

    23. [23]

      ZHANG Q, LI C, XU S, SHAN H, YANG C. Synthesis of a ZSM-5(core)/SAPO-5(shell) composite and its application in FCC[J]. J Porous Mater, 2013,20:171-176. doi: 10.1007/s10934-012-9586-x

    24. [24]

      ZHANG X, WANG J W, ZHONG J, LIU A S, GAO J K. Characterization and catalytic performance of SAPO-11/Hβ composite molecular sieve compared with the mechanical mixture[J]. Microporous Mesoporous Mater, 2008,108:13-21. doi: 10.1016/j.micromeso.2007.03.022

    25. [25]

      ZHOU Zhi-hua, LU Jin-ming, WU Shu-feng, ZHOU Jing-lin, WANG Jin-qu. Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization[J]. J Inorg Mater, 2009,24(2):325-329.  

    26. [26]

      DUAN C, ZHANG X, ZHOU R, HUA Y, ZHANG L, CHEN J. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture[J]. Fuel Proc Technol, 2013,108:31-40. doi: 10.1016/j.fuproc.2012.03.015

    27. [27]

      WU G, WU W, WANG X, ZAN W, WANG W J, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013,180:187-195. doi: 10.1016/j.micromeso.2012.11.011

    28. [28]

      JANSEN J C, GAAG F J, BEKKUM H. Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy[J]. zeolites, 1984,4:369-372. doi: 10.1016/0144-2449(84)90013-7

    29. [29]

      CHAE H J, SONG Y H, JEONG K E, KIM C U, JEONG S Y. Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. J Phys Chem Solids, 2010,71:600-603. doi: 10.1016/j.jpcs.2009.12.046

    30. [30]

      YANG Y, SUN C, DU J M, YUE Y H, HUA W M, ZHANG C L, SHEN W, XU H L. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012,24:44-47. doi: 10.1016/j.catcom.2012.03.013

    31. [31]

      MULLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VEEN A C, HALLER G L, SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on HZSM-5 in the conversion of methanol to olefins[J]. Chem Eng J, 2015,278:159-165. doi: 10.1016/j.cej.2014.11.026

    32. [32]

      NIEMINEN V, KUMAR N, HEIKKILA T, LAINE E, VILLEGAS J, SALMI T, MURZIN Y D. Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources[J]. Appl Catal A:Gen, 2004,259:227-234. doi: 10.1016/j.apcata.2003.09.038

    33. [33]

      NAKASAKA Y, NISHIMURA J I, TAGO T, MASUDA T. Deactivation mechanism of MFI-type zeolites by coke formation during n-hexane cracking[J]. J Catal, 2015,278:159-165.  

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(6)
  • Abstract views(2344)
  • HTML views(1007)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return