Citation: SONG Yang-bo, XU Shao-ping, LI Ling-li, XIAO Ya-hui. Chemical looping gasification of coal char with Cu-olivine oxygen carriers[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 916-923. shu

Chemical looping gasification of coal char with Cu-olivine oxygen carriers

  • Corresponding author: XU Shao-ping, spxu@dlut.edu.cn
  • Received Date: 29 March 2017
    Revised Date: 26 May 2017

Figures(10)

  • A Cu-olivine oxygen carrier was prepared using impregnation method and used for steam gasification of coal char in a fixed bed reactor. It is shown that higher gasification temperature and steam/C molar ratio conduce to an increase in carbon conversion and syngas yield. The increase of CuO loading on the oxygen carrier and the oxygen carrier/char weight ratio leads to a higher carbon conversion but a lower syngas yield. The reaction activity of oxygen carrier has not been reduced after multiple regenerations at 950 ℃, which indicates that the olivine could inhibit the sintering of the supported Cu/CuO. The gasification at 800 ℃ in the presence of the oxygen carrier after 8th regeneration has a carbon conversion of 42.3%, a water conversion of 57.3% and a syngas yield of 2.12 L/(g·h).
  • 加载中
    1. [1]

      FAN L S. Chemical Looping Systems for Fossil Energy Conversions[M]. John Wiley & Sons, 2011.

    2. [2]

      LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation; Application of chemical-looping combustion[J]. Chem Eng Sci, 2001,56(10):3101-3113. doi: 10.1016/S0009-2509(01)00007-0

    3. [3]

      MATTISSON T, LYNGFELT A, LEION H. Chemical-looping with oxygen uncoupling for combustion of solid fuels[J]. Int J Green Gas Con, 2009,3(1):11-19. doi: 10.1016/j.ijggc.2008.06.002

    4. [4]

      ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, LUIS F. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012,38(2):215-282. doi: 10.1016/j.pecs.2011.09.001

    5. [5]

      SIRIWARDANE R, RILEY J, TIAN H, RICHARDS G. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid-solid reactions[J]. Appl Energ, 2016,165:952-966. doi: 10.1016/j.apenergy.2015.12.085

    6. [6]

      YONGZHUO L I U, QINGJIE G U O. Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process[J]. Chin J Chem Eng, 2013,21(2):127-134. doi: 10.1016/S1004-9541(13)60450-4

    7. [7]

      HUANG Zhen-yao, HE Yao-fang, LI Hai-bin, ZHAO Zeng-li. Synthesis gas generation by chemical-looping gasification of biomass using natural hematite as oxygen carrier[J]. J Fuel Chem Technol, 2012,40(3):300-308.  

    8. [8]

      RAN Jing-yu, ZHANG Song, QIN Chang-lei, YU Jian-gong, FU Fan-xuan, YANG Lin. Gasification reactivity of biomass char with oxygen carrier CuO[J]. J Fuel Chem Technol, 2014,42(11):1316-1323. doi: 10.3969/j.issn.0253-2409.2014.11.007 

    9. [9]

      CORBELLA B, PALACIOS J M. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane[J]. Fuel, 2007,86(2):113-122.  

    10. [10]

      GAYÁN P, FORERO C R, ABAD A, DIEGO L F, GARCIA-LABIANO F, ADANEZ J. Effect of support on the behavior of Cu-based oxygen carriers during long-term CLC operation at temperatures above 1073 K[J]. Energy Fuels, 2011,25(3):1316-1326. doi: 10.1021/ef101583w

    11. [11]

      ISHIDA M, JIN H. A novel combustor based on chemical-looping reactions and its reaction kinetics[J]. J Chem Eng Jpn, 1994,27(3):296-301. doi: 10.1252/jcej.27.296

    12. [12]

      ADDNEZ J, DE DIEGO L F, GARCIA-LABIANO F, GAYAN P, ABAD A. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels, 2004,18(2):371-377. doi: 10.1021/ef0301452

    13. [13]

      RYU H J, SEO Y, JIN G T. Development of chemical-looping combustion technology: long-term operation of a 50 kW/h chemical-looping combustor with Ni-and CO-based oxygen carrier particles[C]. In: Proc of the Regional Symp on Chem Eng Hanoi, Vietnam, 2005.

    14. [14]

      SONG Q, XIAO R, DENG Z, SHEN L, XIAO J, ZHANG M. Effect of temperature on reduction of CaSO4 oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor[J]. Ind Eng Chem Res, 2008,47(21):8148-8159. doi: 10.1021/ie8007264

    15. [15]

      RYDÉN M, LYNGFELT A, MATTISSON T, CHEN D, HOLMEN A, BJØRGUM E. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. Int J Green Gas Con, 2008,2(1):21-36. doi: 10.1016/S1750-5836(07)00107-7

    16. [16]

      GUO Q, CHENG Y, LIU Y, JIA W, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2013,53(1):78-86.  

    17. [17]

      GE Hui-jun, GUO Wan-jun, SHEN Lai-hong, SONG Tao, Gu Hai-ming, JIANG Shou-xi. Experiments on chemical looping gasification of biomass with natural hematite as oxygen carrier[J]. J Eng Thermophys, 2015,36(6):1371-1375.  

    18. [18]

      LIU Yong-qiang, WANG Zhi-qi, WU Jin-hu, WU Jing-li, XU Mei. Investigation on Cu-based oxygen carrier for chemical looping combustion of combustible solid waste[J]. J Fuel Chem Technol, 2013,41(9):1056-1063.  

    19. [19]

      YANG W, ZHAO H, MA J, MEI D, ZHENG C. Copper-decorated hematite as an oxygen carrier for in situ gasification chemical looping combustion of coal[J]. Energy Fuels, 2014,28(6):3970-3981. doi: 10.1021/ef5001584

    20. [20]

      NIU X, SHEN L, JIANG S, GU H, XIAO J. Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier[J]. Chem Eng J, 2016,294:185-192. doi: 10.1016/j.cej.2016.02.115

    21. [21]

      LI F, LUO S, SUN Z, BAO X, FAN L S. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energ Environ Sci, 2011,4(9):3661-3667. doi: 10.1039/c1ee01325d

    22. [22]

      WEI Li-gang, XU Shao-ping, LIU Chang-hou, LIU Shu-qin. Effects of pre-calcination on catalytic activity of olivine in biomass gasification[J]. J Fuel Chem Technol, 2008,36(4):426-430.  

    23. [23]

      ŚWIERCZYŃSKI D, COURSON C, BEDEL L, KIENNEMANN A, VILMINOT S. Oxidation reduction behavior of iron-bearing olivines (FexMg1-x)2SiO4 used as catalysts for biomass gasification[J]. Chem Mater, 2006,18(4):897-905. doi: 10.1021/cm051433+

  • 加载中
    1. [1]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    13. [13]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    17. [17]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    18. [18]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    19. [19]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    20. [20]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

Metrics
  • PDF Downloads(3)
  • Abstract views(1704)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return