Citation: Chen Chenglong, Sun Shuyu, Zhou Weizeng, Xia Yamu. Research Progress in Catalytic Synthesis of Bioactive Compounds by Laccase[J]. Chemistry, ;2018, 81(10): 896-902. shu

Research Progress in Catalytic Synthesis of Bioactive Compounds by Laccase

  • Corresponding author: Xia Yamu, xiayamu@126.com
  • Received Date: 20 June 2018
    Accepted Date: 15 July 2018

Figures(8)

  • The increasing demand for bioactive compounds is mainly pushed by their wide range of nutritional and therapeutic benefits, especially in pharmaceutical and food industries. But the large-scale industrial application of bioactive compounds was limited by conventional production means. Laccase, as biocatalysts, is one of the encouraging potential enzymes for industrialization, which have demonstrated high efficiency in the synthesis of bioactive compounds under mild conditions. This review summarizes the application of this interesting enzyme in synthesizing bioactive compounds in the last decade, and also introduces the enzyme structure and the catalytic mechanism relevant to their application as biocatalysts. In addition, the review also comprises a discussion of the hurdles, such as lack of sufficient enzyme stocks and some laccase mediator systems are inapplicable for industrialization, etc, in industrialized application of laccase. Finally, the key areas for future research are pointed out which include enhancing output of laccase by heterologous expression, improving lifetime of laccase by immobilization and protein engineering and cutting cost of application by developing more effective and inexpensive mediator coupled with the search of new substrates.
  • 加载中
    1. [1]

      H K Biesalski, L O Dragsted, I Elmadfa et al. Nutrition, 2009, 25(12):1202~1205. 

    2. [2]

      P M Krisetherton, K D Hecker, A Bonanome et al. Am. J. Med., 2002, 113(9):71~88. 

    3. [3]

      M D S M Rufino, R E Alves, E S D Brito et al. Food Chem., 2010, 121(4):996~1002. 

    4. [4]

      M N Asl, H Hosseinzadeh. Phytother. Res., 2008, 22(6):709~724. 

    5. [5]

      T Kudanga, B Nemadziva, M Le Roes-Hill. Appl. Microbiol. Biotechnol., 2017, 101(1):13~33. 

    6. [6]

      S Grabley, R Thiericke. Adv. Biochem. Eng. Biotechnol., 1999, 64:101~154. 

    7. [7]

      I Antonopoulou, S Varriale, E Topakas et al. Appl. Microbiol. Biotechnol., 2016, 100(15):6519~6543. 

    8. [8]

      C Cabreravique, R Marfil, R Giménez et al. Nutr. Rev., 2012, 70(5):266~279. 

    9. [9]

      G Joana Gil-Chávez, J A Villa, J Fernando Ayala-Zavala et al. Compr. Rev. Food Sci. Food Safety, 2013, 12(1):5~23. 

    10. [10]

      L Gianfreda, F Xu, J-M Bollag. Bioremed. J., 1999, 3(1):1~26. 

    11. [11]

    12. [12]

       

    13. [13]

      A Kunamneni, F J Plou, A Ballesteros et al. Recent Pat. Biotechnol., 2008, 2(1):10~24. 

    14. [14]

      P Giardina, V Faraco, C Pezzella et al. Cell. Mol. Life Sci., 2010, 67(3):369~385. 

    15. [15]

      M Alcalde. Laccases:biological functions, molecular structure and industrial applications//Industrial enzymes. Springer, Dordrecht, 2007:461~476. 

    16. [16]

      V Madhavi, S S Lele. Bioresources, 2009, 4(4):1694~1717. 

    17. [17]

      N Durán, M A Rosa, A D'Annibale et al. Enzyme Microb. Tech., 2002, 31(7):907~931. 

    18. [18]

      S G Burton. Curr. Org. Chem., 2003, 7(13):1317~1331. 

    19. [19]

      C F Thurston. Microbiology, 1994, 140(1):19~26. 

    20. [20]

       

    21. [21]

      S M Jones, E I Solomon. Cell. Mol. Life Sci., 2015, 72(5):869~883. 

    22. [22]

      Glazunova, N A Trushkin, K V Moiseenko et al. Catalysts, 2018, 8(4):152~160. 

    23. [23]

      H Serrano-Posada, S Centeno-Leija, S P Rojas-Trejo et al. Acta Crystallogr., 2015, 71(Pt 12):2396~2411. 

    24. [24]

      F J Enguita, L O Martins, A O Henriques et al. J. Biol. Chem., 2003, 278(21):19416~19425. 

    25. [25]

      K M Polyakov, S Gavryushov, S Ivanova et al. Acta Crystallogr. D, 2017, 73(5):388~401. 

    26. [26]

      A J Augustine, C Kjaergaard, M Qayyum et al. J. Am. Chem. Soc., 2010, 132(17):6057~6067. 

    27. [27]

      H Komori, Y Higuchi. J. Biochem., 2015, 158(4):293~298. 

    28. [28]

      S K Lee, S D George, W E Antholine et al. J. Am. Chem. Soc., 2002, 124(21):6180~6193. 

    29. [29]

      S Witayakran, A J Ragauskas. Adv. Synth. Catal., 2009, 351(9):1187~1209. 

    30. [30]

      A Mikolasch, F Schauer. Appl. Microbiol. Biotechnol., 2009, 82(4):605~624. 

    31. [31]

      R B Teponno, S Kusari, M Spiteller. Nat. Prod. Rep., 2016, 33(9):1044~1092. 

    32. [32]

      M-A Constantin, J Conrad, U Beifuss. Green Chem., 2012, 14(9):2375~2379. 

    33. [33]

      K W Wellington, T Qwebani-Ogunleye, N I Kolesnikova et al. Arch. Pharm. (Weinheim), 2013, 346(4):266~277. 

    34. [34]

      N Cardullo, L Pulvirenti, C Spatafora et al. J. Nat. Prod., 2016, 79(8):2122~2134. 

    35. [35]

      H Agematu, T Tsuchida, K Kominato et al. J. Antibiot., 1993, 46(1):141~148. 

    36. [36]

      R N Jones, M E Erwin. Antimicrob. Agents Chemother., 1992, 36(1):233~238 

    37. [37]

      A Mikolasch, M Wurster, M Lalk et al. Chem. Pharm. Bull., 2008, 56(7):902~907. 

    38. [38]

      A Mikolasch, S Hessel, M G Salazar et al. Chem. Pharm. Bull., 2008, 56(6):781~786. 

    39. [39]

      V Hahn, A Mikolasch, K Wende et al. Biotechnol. Appl. Biochem., 2009, 54(4):187~195. 

    40. [40]

      A Mikolasch, O Hildebrandt, R Schluter et al. Appl. Microbiol. Biotechnol., 2016, 100(11):4885~4899. 

    41. [41]

      H T Abdel-Mohsen, J Conrad, U Beifuss. J. Org. Chem., 2013, 78(16):7986~8003. 

    42. [42]

      H T Abdel-Mohsen, J Conrad, K Harms et al. RSC Adv., 2017, 7(28):17427~17441. 

    43. [43]

      K W Wellington, N I Kolesnikova. Bioorg. Med. Chem., 2012, 20(14):4472~4481. 

    44. [44]

      H Adibi, A Rashidi, M M Khodaei et al. Chem. Pharm. Bull., 2011, 59(9):1149~1152. 

    45. [45]

      H T Abdel-Mohsen, J Conrad, U Beifuss. Green Chem., 2014, 16(1):90~95. 

    46. [46]

      D Habibi, A Rahimi, A Rostami et al. Tetrahed. Lett., 2017, 58(4):289~293. 

    47. [47]

      S Yazdanyar, J Boer, G Ingvarsson et al. Dermatology, 2011, 222(4):342~346. 

    48. [48]

      P Prasit, Z Wang, C Brideau et al. Bioorg. Med. Chem. Lett., 1999, 9(13):1773~1778. 

    49. [49]

      M Artico, R Silvestri, E Pagnozzi et al. J. Med. Chem., 2000, 43(9):1886~1891. 

    50. [50]

      T Qwebani-Ogunleye, N I Kolesnikova, P Steenkamp et al. Bioorg. Med. Chem., 2017, 25(3):1172~1182. 

    51. [51]

      A C Sousa, M Conceição Oliveira, L O Martins et al. Adv. Synth. Catal., 2018, 360(3):575~583. 

    52. [52]

      M C Cholo, H C Steel, P B Fourie et al. J. Antimicrob. Chemother., 2012, 67(2):290~298. 

    53. [53]

      F Sagui, C Chirivì, G Fontana et al. Tetrahedron, 2009, 65(1):312~317. 

    54. [54]

      D H R Van, D I Jacobs, W Snoeijer et al. Curr. Med. Chem., 2004, 11(5):607~628. 

    55. [55]

      M D Cannatelli, A J Ragauskas. Chem. Eng. Res. Design, 2015, 97:128~134. 

    56. [56]

      F F Fleming, L Yao, P C Ravikumar et al. J. Med. Chem., 2010, 53(22):7902~7917. 

    57. [57]

      I O Edafiogho, K V Ananthalakshmi, S B Kombian. Bioorg. Med. Chem., 2006, 14(15):5266~5272. 

    58. [58]

      H Zhang, Z Wang, C Wang et al. RSC Adv., 2014, 4(37):19512~19515. 

    59. [59]

      B Bertrand, F Martinez-Morales, M R Trejo-Hernandez. Biotechnol. Prog., 2017, 33(4):1015~1034. 

    60. [60]

      K Agrawal, V Chaturvedi, P Verma. Bioresour. Bioprocess., 2018, 5(1):4. 

    61. [61]

      H L Ma, S Kermasha, J M Gao et al. J. Mol. Catal. B, 2009, 57(1):89~95. 

  • 加载中
    1. [1]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    2. [2]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    3. [3]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    14. [14]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(13)
  • Abstract views(1253)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return