Citation: WANG Lei, XU Tian-xiao, HAN Yan-xu, QING Shao-jun, MA Yu-bo. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 100-107. shu

Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite

  • Corresponding author: QING Shao-jun, qingshaojun@sxicc.ac.cn
  • Received Date: 25 September 2019
    Revised Date: 28 November 2019

    Fund Project: the National Nature Science Foundation of China 21808192Foundation of Xinjiang Education Department XJEDU2017S002the National Nature Science Foundation of China U1703128The project was supported by the National Nature Science Foundation of China (21808192, U1703128), the Doctoral Scientific Research Staring Foundation of Lingnan Normal University(ZL2017), Natural Science Foundation of Xinjiang Uygur Autonomous Region (2016D01C077), Foundation of Xinjiang Education Department(XJEDU2017S002)the Doctoral Scientific Research Staring Foundation of Lingnan Normal University ZL2017Natural Science Foundation of Xinjiang Uygur Autonomous Region 2016D01C077

Figures(8)

  • Organic-pillared vermiculite supported Ru (Ru/OV) was prepared via adsorption-precipitation method, using RuCl3·xH2O as precursor and applied to catalytic hydrogenation of methyl levulinate (ML). The physicochemical properties of the catalysts were investigated by XRD, N2-adsorption-desorption, TEM and XPS. Effects of reaction temperature, pressure, reaction time on the catalytic performance were studied by orthogonal and single factor experiments. Under the optimum conditions, the conversion of ML and the selectivity of γ-valerolactone (GVL) were 84% and 100%, separately. After being recycled for 20 times, the conversion of ML was above 80% and the 100% selectivity of GVL could be obtained.
  • 加载中
    1. [1]

      ZHANG C T, HUO Z B, REN D Z, SONG Z Y, LIU Y J, JIN F M, ZHOU W M. Catalytic transfer hydrogenation of levulinate ester into γ-valerolactone over ternary Cu/ZnO/Al2O3 catalyst[J]. J Energy Chem, 2019,32:189-197. doi: 10.1016/j.jechem.2018.08.001

    2. [2]

      LILGA M A, PADMAPERUMA A B, AUBERRY D L, JOB H M, SWITA M S. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors[J]. Catal Today, 2018,302:80-86. doi: 10.1016/j.cattod.2017.06.021

    3. [3]

      KANG S M, FU J X, YE Y Y, LIAO W B, XIAO Y K, YANG P J, LIU G H. One-pot production of hydrocarbon oils from biomass derived γ-valerolactone[J]. Fuel, 2018,216:747-751. doi: 10.1016/j.fuel.2017.12.062

    4. [4]

      HAN J. Integrated process for simultaneous production of jet fuel range alkenes and N-methylformanilide using biomass-derived gamma-valerolactone[J]. J Ind Eng Chem, 2017,48:173-179. doi: 10.1016/j.jiec.2016.12.036

    5. [5]

      SONG B, YU Y, WU H W. Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass, hydrolysis in hot-compressed GVL/water mixtures[J]. Fuel, 2018,232:317-322. doi: 10.1016/j.fuel.2018.05.154

    6. [6]

      LI X Y, LIU Q L, SI C L, LU L F, LUO C H, GU X C, LU W, LIU X B. Green and efficient production of furfural from corn cob over H-ZSM-5 using γ-valerolactone as solvent[J]. Ind Crop Prod, 2018,120:343-350. doi: 10.1016/j.indcrop.2018.04.065

    7. [7]

      FENG J, GU X C, XUE Y D, HAN Y W, LU X B. Production of gamma-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source[J]. Sci Total Environ, 2018,633:426-432. doi: 10.1016/j.scitotenv.2018.03.209

    8. [8]

      UPARE P P, LEE J M, HWANG D W, HALLIGUDI S B, HWANG Y K, CHANG J S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts[J]. J Ind Eng Chem, 2011,17(2):287-292. doi: 10.1016/j.jiec.2011.02.025

    9. [9]

      CAO S, MONNIER J R, WILLIAMS C T, DIAO W J, REGALBUTO J R. Rational nanoparticle synthesis to determine the effects of size, support, and K dopant on Ru activity for levulinic acid hydrogenation to γ-valerolactone[J]. J Catal, 2015,326:69-81. doi: 10.1016/j.jcat.2015.03.004

    10. [10]

      YAN Z P, LU L, LIU S J. Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst[J]. Energy Fuels, 2009,23(8):3853-3858. doi: 10.1021/ef900259h

    11. [11]

      LUO W H, DEKA U, BEALE A M, VAN ECK E R H, BRUIJNINCX P C A, WECKHUYSEN B M. Ruthenium-catalyzed hydrogenation of levulinic acid:Influence of the support and solvent on catalyst selectivity and stability[J]. J Catal, 2013,301:175-186. doi: 10.1016/j.jcat.2013.02.003

    12. [12]

      WU L Q, SONG J L, ZHOU B W, WU T B, JIANG T, HAN B X. Preparation of Ru/graphene using glucose as carbon source and hydrogenation of levulinic acid to gamma-valerolactone[J]. Chem Asian J, 2016,11(19):2792-2796. doi: 10.1002/asia.201600453

    13. [13]

      MALAMIS S, KATSOU E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite:Examination of process parameters, kinetics and isotherms[J]. J Hazard Mater, 2013,252/253:428-461. doi: 10.1016/j.jhazmat.2013.03.024

    14. [14]

      WANG Lei, HAN Yan-xu, XU Tian-xiao, LIU Lang. Preparation of Ru/modified-vermiculite catalyst and the catalytic performance for hydrogenation of dimethyl maleate[J]. Nat Gas Chem Ind, 2018,43(6):24-28. doi: 10.3969/j.issn.1001-9219.2018.06.006

    15. [15]

      DIVAKAR D, MANIKANDAN D, RUPA V, PREETHI E L, CHANDRASEKAR R, SIVAKUMAR T. Palladium-nanoparticle intercalated vermiculite for selective hydrogenation of α, β-unsaturated aldehydes[J]. J Chem Technol Biot, 2007,82(3):253-258.  

    16. [16]

      LIU Y F, HE Z H, ZHOU L, HOU Z S, AILI WU M J. Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts[J]. Catal Commun, 2013,42:40-44. doi: 10.1016/j.catcom.2013.07.034

    17. [17]

      AGNIESZKA W, WOJCIECH S, OLGA F, KAMILA K, ARTUR B, TUKSAZ J, TOMASZ D, CRZEGORZ M, SONIA F. Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite[J]. Appl Clay Sci, 2018,155:37-49. doi: 10.1016/j.clay.2018.01.002

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    19. [19]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(12)
  • Abstract views(2213)
  • HTML views(260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return