Citation: JIANG Chao, ZHONG Zhao-ping, HUANG Jin. Effects of preparation conditions on the properties of the vanadium based middle-low temperature SCR catalysts modified with antimony and tungsten[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1394-1400. shu

Effects of preparation conditions on the properties of the vanadium based middle-low temperature SCR catalysts modified with antimony and tungsten

  • Corresponding author: ZHONG Zhao-ping, zzhong@seu.edu.cn
  • Received Date: 12 August 2019
    Revised Date: 17 September 2019

    Fund Project: The project was supported by Jiangsu Provincial Policy Guidance Program (BY2015070-21)Jiangsu Provincial Policy Guidance Program BY2015070-21

Figures(7)

  • Combined with the superior resistance to sulfur as well to water of antimony, and the ability of tungsten to increase the activity of vanadium-based catalysts, antimony and tungsten were used as promoters to prepare the V-W-Sb/Ti catalysts using impregnation method, and the denitrification of the modified catalysts made by different preparation conditions was investigated. The tests of the activity and the resistance to H2O and SO2 were carried out in a fixed bed reactor, and the catalysts were characterized by N2 physical adsorption-desorption, X-ray diffraction, NH3-TPD test and H2-TPR. In the case of the selected catalyst formulation 3V2O5-5WO3-2Sb2O3/90TiO2, the experimental results show that the catalyst prepared by using antimony acetate as the precursor has better activity than that prepared by using antimony chloride as precursor; the catalyst prepared by calcination at 400℃ has higher denitrification efficiency than that prepared at 500℃; the difference in the number of impregnation steps has a limited effect on the activity of the catalyst. At the denitrification temperature of 180℃, and 10% (volume ratio) H2O and 0.01%SO2 added in the feed gas, under the same calcination temperature, the activity of the catalyst prepared by two-step impregnation and using antimony acetate as the precursor is only 2% higher than the catalyst prepared by one-step impregnation and using antimony chloride as the precursor, the latter one has a simple and convenient preparation process, so it has more industrial application value.
  • 加载中
    1. [1]

      WEI Zheng-le, HUANG Bi-chun, YE Dai-qi, XU Xue-mei. Review of catalysts for low-temperature SCR of NOx[J]. Chem Ind Eng Prog, 2007,26(3):320-325. doi: 10.3321/j.issn:1000-6613.2007.03.005

    2. [2]

      TAO Z QU R Y, SU W K, LI J H. A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2015,176/177:338-346. doi: 10.1016/j.apcatb.2015.04.023

    3. [3]

      LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. J Fuel Chem Technol, 2017,45(12):1508-1513. doi: 10.3969/j.issn.0253-2409.2017.12.013

    4. [4]

      LIU C X, CHEN L, LI J H, MA L, HAMIDREZA A. D, XU J Y. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol, 2012,46(11):6182-6189. doi: 10.1021/es3001773

    5. [5]

      CHEN L, LI J H, GE M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J Phys Chem C, 2009,113(50):21177-21184. doi: 10.1021/jp907109e

    6. [6]

      XIONG S C, XIAO X, LIAO Y, DANG H, SHAN W P, YANG S J. A global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2:Relationship between the SCR performance and the key factors[J]. Ind Eng Chem Res, 2015,54(44):11011-11023. doi: 10.1021/acs.iecr.5b03044

    7. [7]

      SHEN M Q, LI C X, WANG J Q, XU L L. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. Rsc Adv, 2015,5(44):35155-35165. doi: 10.1039/C5RA04940G

    8. [8]

      QIAO Nan-li, YANG Yi-xin, SONG Huan-qiao, GUO Lin, LUO Ming-sheng. Research status and progresses on NH3-SCR catalysts for low-temperature denitration[J]. Environ Prot Chem Ind, 2017,37(3):282-288. doi: 10.3969/j.issn.1006-1878.2017.03.005

    9. [9]

      HOU Xin, LI Fei, QI Jing, LIU Cheng. Studies of the behaviors of DeNOx low-temperature NH3-SCR catalysts[J]. Ind Catal, 2017,25(6):1-8. doi: 10.3969/j.issn.1008-1143.2017.06.001

    10. [10]

      LI Hai-ying, ZHOU Yong, WANG Xue-hai, WU Hao. Progress in selective catalytic reduction of NOx with NH3 over cerium oxide-based catalysts[J]. Ind Catal, 2013,21(1):6-11. doi: 10.3969/j.issn.1008-1143.2013.01.002

    11. [11]

      GUO X, BARTHOLOMEW C, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B:Environ, 2009,92(1):30-40.  

    12. [12]

      KOMPIOA P G W A, BRÜCKNER A, HIPLER F, AUER G, LÖFFLER E, GRÜNERT W. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3[J]. J Catal, 2012,286(4):237-247.  

    13. [13]

      CHEN C M, CAO Y, LIU S T, CHEN J M, JIA W B. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin J Catal, 2018,39(8):1347-1365. doi: 10.1016/S1872-2067(18)63090-6

    14. [14]

      DU X S, GAO X, FU Y C, GAO F F, LUO Z Y, CEN K F. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. J Colloid Interface Sci, 2012,368(1):406-412. doi: 10.1016/j.jcis.2011.11.026

    15. [15]

      PHIL H H, REDDY M P, KUMAR P A, JU K L, HYO J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008,78(3/4):301-308.  

    16. [16]

      XU T F, WU X D, GAO Y X, LIN Q W, HU J F, WENG D. Comparative study on sulfur poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 monolithic catalysts for low-temperature NH3-SCR[J]. Catal Commun, 2017,93(Complete):33-36.  

    17. [17]

      DENG Y X, CHEN X, SHAO R, LI M H. V2O5-WO3/TiO2 catalysts for low temperature NH3 SCR:Catalytic activity and characterization[J]. Key Eng Mater, 2016,697:275-278. doi: 10.4028/www.scientific.net/KEM.697.275

    18. [18]

      WANG C Z, YANG S J, CHANG H Z. P Y, LI J H. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2:Acidity, surface species and catalytic activity[J]. Chem Eng J, 2013,225(6):520-527. doi: 10.1016/j.cej.2013.04.005

    19. [19]

      CAO Zheng, HUANG Yan, PENG Li-li, LI Jian-guang. Selective catalytic reduction of NO with ammonia over V2O5-Sb2O3-TiO2 at low temperature and resistance to H2O and SO2 poisoning[J]. J Fuel Chem Technol, 2012,40(4):456-462. doi: 10.3969/j.issn.0253-2409.2012.04.013

    20. [20]

      WANG Xing-yi. Catalyst Characterization[M]. Shanghai:East China University of Science and Technology Press, 2008.

    21. [21]

      CHENG K, LIU J, ZHAO Z, WEI Y. Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3[J]. RSC Adv, 2015,5(56):45172-45183. doi: 10.1039/C5RA05978J

    22. [22]

      ZHANG Yu-feng. Influences on the ratio of V4+(3+)/V5+ and the redox rate in mutual transformation and SCR DeNOx activity[D]. Harbin: Harbin Engineering University, 2014.

    23. [23]

      KWON D W, PARK K H, HONG S C. The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method[J]. Appl Catal A:Gen, 2013,451(2):227-235.  

    24. [24]

      ROCHA K O, ZANETTI S M. Structural and properties of nanocrystalline WO3/TiO2-based humidity sensors elements prepared by high energy activation[J]. Sensor Actuat B-Chem, 2011,157(2):654-661. doi: 10.1016/j.snb.2011.05.048

    25. [25]

      LEE K J, KUMAR P A, MAQBOOL M S, RAO K N, SONG K H, HA H P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR:Physico-chemical properties and catalytic activity[J]. Appl Catal B:Environ, 2013,142/143(10):705-717. doi: 10.1016/j.apcatb.2013.05.071

    26. [26]

      DANH H T, KUMAR P A, JEONG Y E, HA H P. Enhanced NH3-SCR activity of Sb-V/CeO2-TiO2 catalyst at low temperatures by synthesis modification[J]. Res Chem Intermediat, 2015,42(1):155-169.  

    27. [27]

      BUSCA G, CENTI G, MARCHETTI L, TRIFIRO F. Chemical and spectroscopic study of the nature of a vanadium oxide monolayer supported on a high-surface-area TiO2 anatase[J]. Langmuir, 1986,2(5):568-577. doi: 10.1021/la00071a007

    28. [28]

      MU Yang, YANG Juan, YU Jian, GUO Feng, LIU Yun-yi, XU Guang-wen. Effect of metal sulfate and oxide additives on performance of SCR denitration catalyst[J]. J Chem Ind Eng, 2013,64(9):3220-3227.  

    29. [29]

      MUÑIZ J, MARBÁN G, FUERTES A B. Low temperature selective catalytic reduction of NO over modified activated carbon fibres[J]. Appl Catal B:Environ, 2000,27(1):27-36. doi: 10.1016/S0926-3373(00)00134-X

    30. [30]

      CHEN L, HORIUCHI T, MORI T. On the promotional effect of Sn in Co-Sn/Al2O3 catalyst for NO selective reduction[J]. Catal Lett, 2001,72(1/2):71-75. doi: 10.1023/A:1009053614743

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(9)
  • Abstract views(805)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return