Citation: ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 163-171. shu

Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study

  • Corresponding author: ZHANG Xiu-xia, zhangxx@upc.edu.cn
  • Received Date: 22 November 2019
    Revised Date: 14 January 2020

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities 18CX02073AThe project was supported by the Fundamental Research Funds for the Central Universities (18CX02073A) and National Natural Science Foundation of China (51874333)National Natural Science Foundation of China 51874333

Figures(9)

  • The effect mechanism of Ca on nitric oxide (NO) heterogeneous reduction by char was investigated using density functional theory (DFT). The electronic structure of char model was analyzed to predict reactive sites. Mayer bond orders were used to quantify formation and breaking of chemical bonds in the reactions. There is a region with high electron localization function values in the extended outer region of unsaturated carbon atoms at the edge. The minimum electrostatic potential of char model, -101.1 kJ/mol, also exists at the edge, indicating the presence of lone pair electrons on edge carbon atoms. The doping of Ca could promote adsorption of the first NO molecule, but has little effect on that of the second NO molecule. The activation energy of rate-determining step is 124.4 kJ/mol for heterogeneous reduction of NO at the edge of char, whereas it is 91.9 kJ/mol at the Ca-decorated char edge. The kinetic analysis shows that the anterior factor increases after doping of Ca, meaning more sites are activated. The promotion of Ca to NO heterogeneous reduction is attributed to combination of the above two aspects.
  • 加载中
    1. [1]

      CEN Ke-fa, NI Ming-jiang, GAO Xiang, LUO Zhong-yang, WANG Zhi-hua, ZHENG Cheng-hang. Progress and prospects on clean coal technology for power generation[J]. Eng Sci, 2015,17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009

    2. [2]

      ULUSOY B, WU H, LIN W G, KARLSTRÖM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel, 2019,236:297-305. doi: 10.1016/j.fuel.2018.08.164

    3. [3]

      SHU Y, WANG H, ZHU J, TIAN G, HUANG J, ZHANG F. An experimental study of heterogeneous NO reduction by biomass reburning[J]. Fuel Process Technol, 2015,132:111-117. doi: 10.1016/j.fuproc.2014.12.039

    4. [4]

      LU P, HAO J T, YU W, ZHU X M, DAI X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel, 2016,170:60-66. doi: 10.1016/j.fuel.2015.12.037

    5. [5]

      ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015,40(5):1160-1164.  

    6. [6]

      WU X Y, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy Fuels, 2015,29(11):7566-7571. doi: 10.1021/acs.energyfuels.5b01550

    7. [7]

      ZHONG Bei-jing, SHI Wei-wei, FU Wei-biao. Effect of catalyst on NO reduction during reburning of coal char[J]. J Eng Therm Energy Power, 2001,16(5):259-274.

    8. [8]

      XU Li, WEI Zhen-zu, GAO Jian-min, WANG Jian, ZHAO Wei, CHENG Jian, DU Qian, ZHAO Guang-bo, WU Shao-hua. Effect of charring condition and catalyst on NO reduction by large char particles[J]. J Harbin Inst Technol, 2016,48(7):53-57.

    9. [9]

      Lü Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU YU-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers, 2018,41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001

    10. [10]

      ZHAO Z B, QIU J S, LI W, CHEN H K, LI B Q. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003,82(8):949-957. doi: 10.1016/S0016-2361(02)00394-0

    11. [11]

      XIN Jin, YIN Shu-jian, SUN Bao-min, ZHU Heng-yi, LUO Xiao, HUANG Qiang, XIAO Hai-ping. Factorial experimental study of analysis of the char-NO reaction intensified by doped metallic compounds[J]. J China Coal Soc, 2015,40(5):1174-1180.

    12. [12]

      LIU L, JIN J, LIN Y Y, HOU F X, LI S J. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016,106:212-220. doi: 10.1016/j.energy.2016.02.148

    13. [13]

      WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009,15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005

    14. [14]

      CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019,47(3):279-286.  

    15. [15]

      ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanism of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol, 2011,17(2):155-159.  

    16. [16]

      GAO Z Y, YANG W J, DING X L, DING Y, YAN W P. Theoretical research on heterogeneous reduction of N2O by char[J]. Appl Therm Eng, 2017,126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166

    17. [17]

      ZHANG H, JIANG X M, LIU J X, LIU J G. Theoretical study on the reactions originating from solid char(N):Radical preference and possible surface N2 formation reactions[J]. Ind Eng Chem Res, 2019,58:18021-18026. doi: 10.1021/acs.iecr.9b02999

    18. [18]

      ZHAO T, SONG W L, FAN C G, LI S, GLARBORG P, YAO X. Density functional theory study of the role of a carbon-oxygen single bond group in the NO-Char reaction[J]. Energy Fuels, 2018,32(7):7734-7744. doi: 10.1021/acs.energyfuels.8b01124

    19. [19]

      MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A, 2007,111:11683-11700. doi: 10.1021/jp073974n

    20. [20]

      FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc., Wallingford CT, 2009.

    21. [21]

      FENG Wei, GAO Hong-feng, WANG Gui, WU Lang-lang, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC J, 2019,70(4):1522-1531.  

    22. [22]

      QIU Y, ZHONG W, SHAO Y, YU A. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technol, 2020,361:337-348. doi: 10.1016/j.powtec.2019.07.103

    23. [23]

      XU F, LIU H, WANG Q, PAN S, ZHAO D, LIU Y. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019,256115884. doi: 10.1016/j.fuel.2019.115884

    24. [24]

      ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019,253:910-920. doi: 10.1016/j.fuel.2019.05.085

    25. [25]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36:1061-1070. doi: 10.1016/S0008-6223(98)00078-5

    26. [26]

      SANDER M, RAJ A, INDERWILDI O, KRAFT M, KURETI S, BOCKHORN H. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines[J]. Carbon, 2009,47:866-875. doi: 10.1016/j.carbon.2008.11.043

    27. [27]

      OYARZÚN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon, 2015,86:58-68. doi: 10.1016/j.carbon.2015.01.020

    28. [28]

      KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999,103(17):3434-3441. doi: 10.1021/jp9845928

    29. [29]

      LU Tian, CHEN Fei-wu. Meaning and functional form of the electron localization function[J]. Acta Phys-Chem Sin, 2011,27(2):2786-2792.  

    30. [30]

      LU T, CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012,33:580-592. doi: 10.1002/jcc.22885

    31. [31]

      BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. J Chem Phys, 1990,92(9):5397-5403. doi: 10.1063/1.458517

    32. [32]

      ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012. 

    33. [33]

      ZHOU Z J, ZHANG X X, ZHOU J H, LIU J Z, CEN K F. A Molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Sources, Part A, 2014,36(2):158-116. doi: 10.1080/15567036.2010.506477

    34. [34]

      XIN Jing, SUN Bao-min, ZHU Heng-yi, YIN Shu-jian, ZHANG Zhen-xing, ZHONG Ya-feng. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014,39(4):771-775.  

    35. [35]

      ZHAO D, LIU H, SUN C L, XU L F, CAO Q X. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018,197:471-486. doi: 10.1016/j.combustflame.2018.09.002

    36. [36]

      MA X C, LI L Q, CHEN R F, WANG C Z, ZHOU K, LI H L. Doping of alkali metals in carbon frameworks for enhancing CO2 capture:A theoretical study[J]. Fuel, 2019,236:942-948. doi: 10.1016/j.fuel.2018.08.166

    37. [37]

      SHEN F H, LIU J, WU D W, DONG Y C, ZHANG Z. Development of O2 and NO Co-doped porous carbon as a high-capacity mercury sorbent[J]. Environ Sci Technol, 2019,53:1725-1731. doi: 10.1021/acs.est.8b05777

    38. [38]

      LIU J, ZHANG X, LU Q, SHAW A, HU B, JIANG X, DONG C. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst, 2019,92(3):604-612.  

    39. [39]

      ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019,47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002

    40. [40]

      BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011,49(5):1561-1567. doi: 10.1016/j.carbon.2010.12.023

    41. [41]

      GARRETT B C, TRUHLAR D G. Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions[J]. J Phys Chem, 1979,83(1):200-203. doi: 10.1021/j100464a026

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    17. [17]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(5)
  • Abstract views(663)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return