Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study
- Corresponding author: ZHANG Xiu-xia, zhangxx@upc.edu.cn
Citation:
ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(2): 163-171.
CEN Ke-fa, NI Ming-jiang, GAO Xiang, LUO Zhong-yang, WANG Zhi-hua, ZHENG Cheng-hang. Progress and prospects on clean coal technology for power generation[J]. Eng Sci, 2015,17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009
ULUSOY B, WU H, LIN W G, KARLSTRÖM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel, 2019,236:297-305. doi: 10.1016/j.fuel.2018.08.164
SHU Y, WANG H, ZHU J, TIAN G, HUANG J, ZHANG F. An experimental study of heterogeneous NO reduction by biomass reburning[J]. Fuel Process Technol, 2015,132:111-117. doi: 10.1016/j.fuproc.2014.12.039
LU P, HAO J T, YU W, ZHU X M, DAI X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel, 2016,170:60-66. doi: 10.1016/j.fuel.2015.12.037
ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015,40(5):1160-1164.
WU X Y, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy Fuels, 2015,29(11):7566-7571. doi: 10.1021/acs.energyfuels.5b01550
ZHONG Bei-jing, SHI Wei-wei, FU Wei-biao. Effect of catalyst on NO reduction during reburning of coal char[J]. J Eng Therm Energy Power, 2001,16(5):259-274.
XU Li, WEI Zhen-zu, GAO Jian-min, WANG Jian, ZHAO Wei, CHENG Jian, DU Qian, ZHAO Guang-bo, WU Shao-hua. Effect of charring condition and catalyst on NO reduction by large char particles[J]. J Harbin Inst Technol, 2016,48(7):53-57.
Lü Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU YU-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers, 2018,41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001
ZHAO Z B, QIU J S, LI W, CHEN H K, LI B Q. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003,82(8):949-957. doi: 10.1016/S0016-2361(02)00394-0
XIN Jin, YIN Shu-jian, SUN Bao-min, ZHU Heng-yi, LUO Xiao, HUANG Qiang, XIAO Hai-ping. Factorial experimental study of analysis of the char-NO reaction intensified by doped metallic compounds[J]. J China Coal Soc, 2015,40(5):1174-1180.
LIU L, JIN J, LIN Y Y, HOU F X, LI S J. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016,106:212-220. doi: 10.1016/j.energy.2016.02.148
WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009,15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005
CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019,47(3):279-286.
ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanism of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol, 2011,17(2):155-159.
GAO Z Y, YANG W J, DING X L, DING Y, YAN W P. Theoretical research on heterogeneous reduction of N2O by char[J]. Appl Therm Eng, 2017,126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166
ZHANG H, JIANG X M, LIU J X, LIU J G. Theoretical study on the reactions originating from solid char(N):Radical preference and possible surface N2 formation reactions[J]. Ind Eng Chem Res, 2019,58:18021-18026. doi: 10.1021/acs.iecr.9b02999
ZHAO T, SONG W L, FAN C G, LI S, GLARBORG P, YAO X. Density functional theory study of the role of a carbon-oxygen single bond group in the NO-Char reaction[J]. Energy Fuels, 2018,32(7):7734-7744. doi: 10.1021/acs.energyfuels.8b01124
MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A, 2007,111:11683-11700. doi: 10.1021/jp073974n
FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc., Wallingford CT, 2009.
FENG Wei, GAO Hong-feng, WANG Gui, WU Lang-lang, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC J, 2019,70(4):1522-1531.
QIU Y, ZHONG W, SHAO Y, YU A. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technol, 2020,361:337-348. doi: 10.1016/j.powtec.2019.07.103
XU F, LIU H, WANG Q, PAN S, ZHAO D, LIU Y. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019,256115884. doi: 10.1016/j.fuel.2019.115884
ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019,253:910-920. doi: 10.1016/j.fuel.2019.05.085
CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36:1061-1070. doi: 10.1016/S0008-6223(98)00078-5
SANDER M, RAJ A, INDERWILDI O, KRAFT M, KURETI S, BOCKHORN H. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines[J]. Carbon, 2009,47:866-875. doi: 10.1016/j.carbon.2008.11.043
OYARZÚN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon, 2015,86:58-68. doi: 10.1016/j.carbon.2015.01.020
KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999,103(17):3434-3441. doi: 10.1021/jp9845928
LU Tian, CHEN Fei-wu. Meaning and functional form of the electron localization function[J]. Acta Phys-Chem Sin, 2011,27(2):2786-2792.
LU T, CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012,33:580-592. doi: 10.1002/jcc.22885
BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. J Chem Phys, 1990,92(9):5397-5403. doi: 10.1063/1.458517
ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012.
ZHOU Z J, ZHANG X X, ZHOU J H, LIU J Z, CEN K F. A Molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Sources, Part A, 2014,36(2):158-116. doi: 10.1080/15567036.2010.506477
XIN Jing, SUN Bao-min, ZHU Heng-yi, YIN Shu-jian, ZHANG Zhen-xing, ZHONG Ya-feng. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014,39(4):771-775.
ZHAO D, LIU H, SUN C L, XU L F, CAO Q X. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018,197:471-486. doi: 10.1016/j.combustflame.2018.09.002
MA X C, LI L Q, CHEN R F, WANG C Z, ZHOU K, LI H L. Doping of alkali metals in carbon frameworks for enhancing CO2 capture:A theoretical study[J]. Fuel, 2019,236:942-948. doi: 10.1016/j.fuel.2018.08.166
SHEN F H, LIU J, WU D W, DONG Y C, ZHANG Z. Development of O2 and NO Co-doped porous carbon as a high-capacity mercury sorbent[J]. Environ Sci Technol, 2019,53:1725-1731. doi: 10.1021/acs.est.8b05777
LIU J, ZHANG X, LU Q, SHAW A, HU B, JIANG X, DONG C. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst, 2019,92(3):604-612.
ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019,47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002
BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011,49(5):1561-1567. doi: 10.1016/j.carbon.2010.12.023
GARRETT B C, TRUHLAR D G. Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions[J]. J Phys Chem, 1979,83(1):200-203. doi: 10.1021/j100464a026
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xiaoyan Wang , Chao Wang , Dongmei Dai , Yanling Geng , Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
(a): mayer bond orders along IRC of TS1; (b): mayer bond orders along IRC of TS2; (c): mayer bond orders along IRC of TS3
(a): mayer bond orders along IRC of CaTS1; (b): mayer bond orders along IRC of CaTS2; (c): mayer bond orders along IRC of CaTS3