Citation: WEN Xiong, ZHANG Yu-hua, LIU Cheng-chao, HONG Jing-ping, WEI Liang, CHEN Yao, LI Jin-lin. Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 950-955. shu

Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis

  • Corresponding author: LI Jin-lin, jinlinli@aliyun.com
  • Received Date: 3 May 2017
    Revised Date: 12 June 2017

    Fund Project: The project was supported by National Natural Science Foundation of China 21203253The project was supported by National Natural Science Foundation of China (21203253, 21473259)The project was supported by National Natural Science Foundation of China 21473259

Figures(8)

  • Uniform ZSM-5 nanoparticles (around 180 nm) were synthesized by steam assisted crystallization method (SAC), which have a hierarchically porous structure, composed of abundant open mesopores from the stacking of ZSM-5 particles and micropores in the ZSM-5 crystallites. The hierarchical ZSM-5 supported cobalt catalyst, with a cobalt loading of 15%, was then prepared through incipient impregnation and used in Fischer-Tropsch synthesis (FTS). The hierarchical ZSM-5 support and Co-based catalyst were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 sorption. The results indicate that the hierarchical ZSM-5 supported cobalt catalyst performs excellently in FTS, since the mesoporous structure in the hierarchical ZSM-5 support can enhance the mass transfer of the reaction products and the acid sites on the microporous ZSM-5 framework can promote the hydrocracking of long chain hydrocarbon products. In comparison with the cobalt catalysts supported on bulk ZSM-5 and commercial ZSM-5, the hierarchical ZSM-5 supported cobalt catalyst exhibits much higher activity in FTS, lower selectivity to CH4, and higher selectivity to C5-20 hydrocarbons (68.9%).
  • 加载中
    1. [1]

      SIE S T, SENDEN M M G, WECHEM H M H V. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS)[J]. Catal Today, 1991,8(3):371-394. doi: 10.1016/0920-5861(91)80058-H

    2. [2]

      JAGER B, ESPINOZA R. Advances in low temperature Fischer-Tropsch synthesis[J]. Catal Today, 1995,23(1):17-28. doi: 10.1016/0920-5861(94)00136-P

    3. [3]

      KONG Xia, HOU Bo, JIA Li-tao, HUANG Wei, SUN Zhi-qiang, LI De-bao, LI Jin-ping. Effect of A12O3 addition on the catalytic performance of Co/SiC catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2013,41(10):1217-1222.  

    4. [4]

      CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997,97(6):2373-2420. doi: 10.1021/cr960406n

    5. [5]

      DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002,417(6891):813-821. doi: 10.1038/nature00785

    6. [6]

      KANG J, CHENG K, ZHANG L, ZHANG Q, DING J, HUA W, LOU Y, ZHAI Q, WANG Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins[J]. Angew Chem Int Edit, 2011,50(22):5200-5203. doi: 10.1002/anie.v50.22

    7. [7]

      JANSSEN A H. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003,45(2):297-319. doi: 10.1081/CR-120023908

    8. [8]

      CHEN S, WANG C, LI J, ZHANG Y, HONG J, WEN X, LIU C. ZSM-5 seed-grafted SBA-15 as a high performance support for cobalt Fischer-Tropsch synthesis catalysts[J]. Catal Sci Technol, 2015,5(11):4985-4990. doi: 10.1039/C5CY00491H

    9. [9]

      LI J, LI X, ZHOU G, WANG W, WANG C, KOMARNENI S, WANG Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Appl Catal A: Gen, 2014,470(2):115-122.  

    10. [10]

      XIN H, LI X, YUAN F, YI X, HU W, CHU Y, ZHANG F, ZHENG A, ZHANG H, LI X. Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites[J]. J Catal, 2014,312(1):204-215.  

    11. [11]

      YANG Jian-hua, YU Su-xia, HU Hui-ye, CHU Nai-bo, LU Jin-ming, YIN De-hong, WANG Jin-qu. Synthesis of hierarchical HZSM-5 microspheres without second template and their application in methane dehydroaromatization[J]. Chin J Catal, 2011,32(2):362-367.  

    12. [12]

      JIN H, ANSARI M B, JEONG E Y, PARK S E. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5[J]. J Catal, 2012,291(7):55-62.  

    13. [13]

      HUANG C H, LIU S J, HWANG W S. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)[J]. Energy, 2011,36(7):4410-4414. doi: 10.1016/j.energy.2011.04.002

    14. [14]

      GIRARDON J S, CONSTANT-GRIBOVAL A, GENGEMBRE L, CHERNAVSKⅡ P A, KHODAKOV A Y. Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts[J]. Catal Today, 2005,106(1/4):161-165.  

    15. [15]

      SARTIPI S, ALBERTS M, MEIJERINK M J, KELLER T C, PÉREZ-RAMÍREZ J, GASCON J, KAPTEIJN F. Towards liquid fuels from biosyngas: Effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts[J]. Chem Sus Chem, 2013,6(9):1646-1650. doi: 10.1002/cssc.201300339

    16. [16]

      LI J, XU Y, WU D, SUN Y. Hollow mesoporous silica sphere supported cobalt catalysts for F-T synthesis[J]. Catal Today, 2009,148(1/2):148-152.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(7)
  • Abstract views(2098)
  • HTML views(537)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return