Citation: SONG Hua, DAI Xue-ya, GONG Jing, SONG Hua-lin, LIU Yan-xiu, LI Feng. Preparation of supported nickel phosphide catalyst by surface modification method and its performance in hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1105-1111. shu

Preparation of supported nickel phosphide catalyst by surface modification method and its performance in hydrodeoxygenation

  • Corresponding author: SONG Hua, songhua2004@sina.com
  • Received Date: 24 March 2016
    Revised Date: 7 May 2016

    Fund Project: the National Natural Science Foundation of China 21276048the Natural Science Foundation of Heilongjiang Province of China ZD201201the Project of Education Department of Heilongjiang Province 12541060

Figures(5)

  • With MCM-41 as support, the supported Ni2P/MCM-41 catalyst is prepared by first reducing the Ni2P precursors at low temperature (673 K) and then modifying the surface with air; the as-prepared Ni2P/MCM-41 catalyst was characterized by X-ray diffraction (XRD), N2-sorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and CO uptake. The catalytic performance of Ni2P/MCM-41 in hydrodeoxygenation (HDO) of benzofuran (BF) was investigated to elucidate the effect of surface modification with air on the catalyst structure and HDO activity. The results show that pure Ni2P acts as the active phase on the surface of modified Ni2P/MCM-41 catalyst; the surface modification can decrease the aggregation of P species and promote the formation of small and highly dispersed Ni2P active phase. Under 573 K, 3.0 MPa, a weight hourly space velocity of 4.0 h-1 and a H2/oil volume ratio of 500, the yield of O-free products reaches 88% for HDO of BF over the modified Ni2P/MCM-41 catalyst, which is about 50% higher than that over the catalyst prepared by conventional temperature-programmed reduction method.
  • 加载中
    1. [1]

      SERRANO RUIZ J C, DUMESIC J A. Catalytic routes for the convention of biomass into liquid hudrocarbon transportation fuels[J]. Energy Environ Sci, 2011,4(1):83-99. doi: 10.1039/C0EE00436G

    2. [2]

      HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    3. [3]

      WANG H M, JONATHAN MALE, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal, 2013,3(5):1047-1070. doi: 10.1021/cs400069z

    4. [4]

      HUANG Y B, WEI L, ZHAO X H, CHENG S Y, JAMES J, CAO Y H, GU Z G. Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst[J]. Energy Convers Manage, 2016,115:8-16. doi: 10.1016/j.enconman.2016.02.049

    5. [5]

      MORTAZA G, RICHARD G, HUA X, FERRAN D M M, ROEL W, WEERAWUT C, MD M H, DANIEL M, LI C Z. Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor[J]. Fuel Process Technol, 2016,148:175-183. doi: 10.1016/j.fuproc.2016.03.002

    6. [6]

      PETER M M, HUDSON W P D C, JAN-DIERK G, PETER A J, ANKER D J. Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol[J]. J Catal, 2015,328:208-215. doi: 10.1016/j.jcat.2015.02.002

    7. [7]

      YANG J, ZHAO L, LIU S, WANG Y Y, DAI L Y. High-quality bio-oil from one-pot catalytic hydrocracking of kraft lignin over supported noble metal catalysts in isopropanol system[J]. Bioresour Technol, 2016,212:302-310. doi: 10.1016/j.biortech.2016.04.029

    8. [8]

      GAUDETTE A F, BURNS A W, HAYES J R, MICA C S, RICHARD H B, TAKELE SEDA, MARK E B. M ssbauer spectroscopy investigation and hydrodesulfurization properties of iron-nickel phosphide catalysts[J]. J Catal, 2010,272(1):18-27. doi: 10.1016/j.jcat.2010.03.016

    9. [9]

      OYAMA S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides[J]. J Catal, 2003,216(1/2):343-352.  

    10. [10]

      LIA X, FENGA J P, GUO J Y, WANG A J, ROEL P, DUAN X P, CHEN Y Y. Preparation of Ni2P/Al2O3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio[J]. J Catal, 2016,334(1):116-119.

    11. [11]

      SONG Hua, DAI Min, SONG Hua-lin. Ni2P catalyst for hydrodesulfurization[J]. Prog Chem, 2012,24(5):43-47.

    12. [12]

      ABU I I, SMITH K J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts[J]. Appl Catal A: Gen, 2007,328(1):58-67. doi: 10.1016/j.apcata.2007.05.018

    13. [13]

      MOON J S, KIM E G, LEE Y K. Active sites of Ni2P/SiO2catalyst for hydrodeoxygenation of guaiacol: A joint XAFS and DFT study[J]. J Catal, 2014,311:144-152. doi: 10.1016/j.jcat.2013.11.023

    14. [14]

      LEE Y K, SHU Y Y, OYAMA S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4, 6-DMDBT[J]. Appl Catal A: Gen, 2007,322:191-204. doi: 10.1016/j.apcata.2007.01.007

    15. [15]

      SONG Hua, WANG Zi-dong, DAI Min, SONG Hua-lin, WAN Xia, LI Feng. Preparation of Ni2P catalysts at low reduction temperature and its HDS performance[J]. J Fuel Chem Technol, 2014,42(6):733-737.  

    16. [16]

      MELéNDEZ-ORTIZ H I, GARCíA-CERDA L A, OLIVARES-MALDONADO Y, CASTRUITA G, MERCADO-SILVA J A, PERERA-MERCADO Y A. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties[J]. Ceram Int, 2012,38(8):6353-6358. doi: 10.1016/j.ceramint.2012.05.007

    17. [17]

      CECILIA J A, INFANTES-MOLINA E, RODRÍGUEZ-CASTELLÓN A, JIMÉNEZ-LÓPEZ A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009,263(1):4-15. doi: 10.1016/j.jcat.2009.02.013

    18. [18]

      BUI P, JUAN A C, OYAMA S T, TAKAGAKI A, INFANTES-MOLINA A, ZHAO H Y, LI D, RODRIGUEZ-CASTELLON E, LÓPEZ A J. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. J Catal, 2012,294:184-198. doi: 10.1016/j.jcat.2012.07.021

    19. [19]

      LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004,108:10930-10941. doi: 10.1021/jp037101e

    20. [20]

      WU S K, LAI P C, LIN Y C. Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts[J]. ACS Sustain Chem Eng, 2013,1:349-358. doi: 10.1021/sc300157d

    21. [21]

      LIU P, RODRIGUEZ J A. Water-gas-shift reaction on a Ni2P (001) catalyst: Formation of oxy-phosphides and highly active reaction sites[J]. J Catal, 2009,262(2):294-303. doi: 10.1016/j.jcat.2009.01.006

    22. [22]

      OKAMOTO H. Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2, 3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst[J]. J Catal, 2009,353(1):46-53.

  • 加载中
    1. [1]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    2. [2]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    3. [3]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    4. [4]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    5. [5]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      . Cover and Table of Contents for Vol.41 No. 2. Acta Physico-Chimica Sinica, 2025, 41(2): -.

    16. [16]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    18. [18]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(0)
  • Abstract views(1614)
  • HTML views(741)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return