Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts
- Corresponding author: LIU Yu-yu, liuyuyu2014@126.com
Citation:
LU Pei-jing, CAI Fu-feng, ZHANG Jun, LIU Yu-yu, SUN Yu-han. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(7): 791-798.
NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable Sustainable Energy Rev, 2017,67(Supplement C):597-611.
SANDRA S Á, SILVA H, BRANDÃO L, SOUSA J, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010,99(1/2):43-57.
FRANK B, JENTOFT F, SOERIJANTO H, KROHNERT J, SCHLOGL R, SCHOMACKER R. Steam reforming of methanol over copper-containing catalysts:Influence of support material on microkinetics[J]. J Catal, 2007,246(1):177-192.
LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, ZHENG J, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017,544(7648):80-83. doi: 10.1038/nature21672
XU T, ZOU J, TAO W, ZHANG S, CUI L, ZENG F, WANG D, CUI W. Co-nanocasting synthesis of Cu based composite oxide and its promoted catalytic activity for methanol steam reforming[J]. Fuel, 2016,183:238-244. doi: 10.1016/j.fuel.2016.06.081
TAGHIZADEH M, AKHOUNDZADEH H, REZAYAN A, SADEGHIAN M. Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming[J]. Int J Hydrogen Energy, 2018,43(24):10926-10937. doi: 10.1016/j.ijhydene.2018.05.034
TALKHONCHEH S, HAGHIGHI M, MINAEI S, AJAMEIN H, ABDOLLAHIFAR M. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production[J]. RSC Adv, 2016,6(62):57199-57209. doi: 10.1039/C6RA03858A
KHZOUZ M, GKANAS E, DU S, WOOD J. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming[J]. Fuel, 2018,232:672-683. doi: 10.1016/j.fuel.2018.06.025
YONG S, OOI C, CHAI S, WU X. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms and reaction schemes[J]. Int J Hydrogen Energy, 2013,38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023
LIU X, MEN Y, WANG J, HE R, WANG Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. J Power Sources, 2017,364(Supplement C):341-350.
CHANG C, CHANG C, CHIANGS J, LIAW B, CHEN Y. Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2010,35(15):7675-7683. doi: 10.1016/j.ijhydene.2010.05.066
MATTER P, OZKAN U. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005,234(2):463-475.
GANG H, LIAW B, JHANG C, CHEN Y. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A:Gen, 2009,358(1):7-12. doi: 10.1016/j.apcata.2009.01.031
TOYIR J, PISCINA P, HOMS N. Ga-promoted copper-based catalysts highly selective for methanol steam reforming to hydrogen; relation with the hydrogenation of CO2 to methanol[J]. Int J Hydrogen Energy, 2015,40(34):11261-11266. doi: 10.1016/j.ijhydene.2015.04.039
YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188.
PARK J, YIM S, KIM C, PARK E. Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2014,39(22):11517-11527. doi: 10.1016/j.ijhydene.2014.05.130
MINAEI S, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming[J]. Adv Powder Technol, 2017,28(3):842-853. doi: 10.1016/j.apt.2016.12.010
BAGHERZADEH S, HAGHIGHI M, RAHEM N. Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol:Influence of ceria-zirconia loading[J]. Energy Convers Manage, 2017,134:88-102. doi: 10.1016/j.enconman.2016.12.005
NANDA M, YUAN Z, SHUI H, XU C. Selective hydrogenolysis of glycerol and crude glycerol (a By-Product or Waste Stream from the Biodiesel Industry) to 1, 2-propanediol over B2O3 promoted Cu/Al2O3 catalysts[J]. Catalysts, 2017,7(7)196. doi: 10.3390/catal7070196
ZHU S, GAO X, ZHU Y, ZHU Y, ZHENG H, LI Y. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-propanediol[J]. J Catal, 2013,303(7):70-79.
AI P, TAN M, YAMANE N, LIU G, FAN R, YANG G, YONEYAMA Y, YANG R, TSUBAKI N. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chem Eur J, 2017,23(34):8252-8261. doi: 10.1002/chem.v23.34
HE Z, LIN H, HE P, YUAN Y. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011,277(1):54-63. doi: 10.1016/j.jcat.2010.10.010
LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(8):992-999.
ZHAO S, YUE H, ZHAO Y, WANG B, GENG Y, LV J, WANG S, GONG J, MA X. Chemoselective synthesis of ethanol via hydrogenation of dimethyl; oxalate on Cu/SiO2:Enhanced stability with boron dopant[J]. J Catal, 2013,297(1):142-150.
AJAMEIN H, HAGHIGHI M, SHOKRANI R, ABDOLLAHIFAR M. On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming:Effect of precursor, ultrasound irradiation and urea/nitrate ratio[J]. J Mol Catal A:Chem, 2016,421:222-234. doi: 10.1016/j.molcata.2016.05.028
FIGEN A. Dehydrogenation characteristics of ammonia boraneviaboron-basedcatalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions[J]. Int J Hydrogen Energy, 2013,38(22):9186-9197. doi: 10.1016/j.ijhydene.2013.05.081
WU J, SAITO M, MABUSE H. Activity and stability of Cu/ZnO/Al2O3 catalyst promoted with B2O3 for methanol synthesis[J]. Catal Lett, 2000,68(1):55-58.
GAO P, ZHONG L, ZHANG L, WANG H, ZHAO N, WEI W, SUN Y. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Sci Technol, 2015,5(9):4365-4377. doi: 10.1039/C5CY00372E
YIN A, QU J, GUO X, DAI W, FAN K. The influence of B-doping on the catalytic performance of Cu/HMS catalyst for the hydrogenation of dimethyloxalate[J]. Appl Catal A:Gen, 2011,400(1):39-47.
SHOKRANI P, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method[J]. Int J Hydrogen Energy, 2014,39(25):13141-13155. doi: 10.1016/j.ijhydene.2014.06.048
CHEN H, TAN J, CUI J, YANG X, ZHENG H, ZHU Y, LI Y. Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Mol Catal, 2017,433:346-353. doi: 10.1016/j.mcat.2017.02.039
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Bright field: (a): CZA; (c): 0.38B/CZA; (e): 4.10B/CZA
Dark field : (b): CZA; (d): 0.38B/CZA; (f): 4.10B/CZA
a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
a: 0.28B/CZA; b: 0.38B/CZA; c: 0.73B/CZA;
d: 0.89B/CZA; e: 4.10B/CZA
a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
n(H2O)/n(CH3OH)=3;
feed rate of liquid mixture, 0.03 mL/min;
GHSV=9000 mL/(g·h); catalyst mass, 0.4 g;
preheater temperature, 300 ℃