Citation: HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 457-462. shu

Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation

  • Corresponding author: FANG Yi-tian, fyt@sxicc.ac.cn
  • Received Date: 9 October 2015
    Revised Date: 10 December 2015

Figures(4)

  • A complexes was produced using hexamethylenetetramine(HMT) as the complexing agent of ammonium molybdate, and β-Mo2C was prepared by a simple thermal decomposition of this complexes. And then Ni was introduced and the bimetallic carbide Ni3Mo3N/β-Mo2C was prepared. The as-prepared products were characterized by XRD, low-temperature nitrogen adsorption, SEM, HRTEM, element analysis (EA), and the performances of the prepared catalysts for methanation were investigated. The results showed that the bulk molybdenum carbide exhibited high conversion of CO (xCO), but xCO and selectivity of CH4 (sCH4) on β-Mo2C decreased from 75.93% and 36.79% to 67.41% and 33.54% within 100 h. Thus the catalytic activity was not stable and sCH4 was low. The addition of Ni markedly promoted the catalyst activity and stability, xCO and sCH4 on Ni3Mo3N/β-Mo2C increased from 83.15% and 46.64% to 92.51% and 57.23% within 100h, which should be attributed to the newly produced Ni3Mo3N after Ni addition.
  • 加载中
    1. [1]

      FU Guo-zhong, CHEN Chao. NG demand and supply in China and economic and technical analysis of coal gasification technology[J]. Sino-Global Energy, 2010,15(6):28-34.  

    2. [2]

      YANG Chun-sheng. Prospects for coal gasification in China[J]. Sino-Global Energy, 2010,15(7):35-40.  

    3. [3]

      LU Xia, CHEN Shi-heng, WANG Wan-li, MA Zi-feng. Progress in Ni-based catalysts for CO methanation[J]. Petrochem Technol, 2010,39(3):340-345.  

    4. [4]

      MO Xin-man, DONG Xin-fa, LIU Qi-hai. Selectivity methanation of CO over Ni-based catalysts supported on nano-Zirconia[J]. Petrochem Technol, 2008,37(4):656-661.

    5. [5]

      LUO Lai-tao, LI Song-jun, DENG Geng-feng. Effect of samarium on Ni/sepiolite methanation catalyst[J]. J Fuel Chem Technol, 2011,29(4):302-304.  

    6. [6]

      TIAN Da-yong, YANG Xia, QIN Shao-dong. Effect of supporter and promoter on stability of Ni-based methanation catalysts[J]. Chem Ind Eng Prog, 2012,31(S1):229-231.  

    7. [7]

      CHEN J G. Carbide and nitride over layers on early transition metal surface: Preparation, characterization and reactivities[J]. Chem Rev, 1996,96(4):1477-1498. doi: 10.1021/cr950232u

    8. [8]

      RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995,99(44):16365-16372. doi: 10.1021/j100044a025

    9. [9]

      CHOI J S, MAUGE F, PICHON C. Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: Application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins[J]. Appl Catal A: Gen, 2004,267(2):203-216.  

    10. [10]

      MASHKINA A V. Thiophene hydrogenation to tetrahydrothiophene over tungsten sulfide catalysts[J]. Kinet Catal, 2003,44(2):277-282. doi: 10.1023/A:1023316831685

    11. [11]

      ABE H, BELL A T. Catalytic hydrotreating of Indole, Benzothiophene and Benzofuran over molybdenum nitride[J]. Catal Lett, 1993,18(3):1-8.  

    12. [12]

      SAJKOWSKI D J, OYAMA S T. Catalytic hydrotreating by molybdenum nitrides and molybdenum carbides[J]. Appl Catal A: Gen, 1996,134(2):339-349. doi: 10.1016/0926-860X(95)00202-2

    13. [13]

      OSHIKAWA K, NAGAI M, OMI S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS[J]. J Phys Chem B, 2001,105(38):9124-9131. doi: 10.1021/jp0111867

    14. [14]

      WANG D, LUNSFORD J H, ROSYNEK M P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene[J]. J Catal, 1997,169(1):347-358. doi: 10.1006/jcat.1997.1712

    15. [15]

      BLEKKAN E, GUONG P H, LEDOUX M J, GUILLE J. Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst[J]. Ind Eng Chem Res, 1994,33(2):1657-1664.  

    16. [16]

      PARK H K. A general surface propertiesand reactivity of supported and unsupported molybdenum nitride catalysts[J]. Appl Catal, 1997,150(1):21-35. doi: 10.1016/S0926-860X(96)00297-9

    17. [17]

      KIM D. CoMo bimetallic nitrides catalysts for thiophene HDS[J]. Catal Lett, 1997,43(1):91-95.

    18. [18]

      PAUL A. Thiophene HDS over alumina-supported molybdenum nitride and carbide: Adsorption sites,catalytic activities and nature of the active surface[J]. J Catal, 1996,164(1):109-121. doi: 10.1006/jcat.1996.0367

    19. [19]

      SCHLATTER J C, OYAMA S T. Catalytic behavior of selected transition-metal carbide, nitride and borides in the HDN of quinolin[J]. Ind Eng Chem Res, 1988,27(9):1648-1653. doi: 10.1021/ie00081a014

    20. [20]

      LI S, LEE J S, HYEON T, SUSLICK K S. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Appl Catal A: Gen, 1999,184(1):1-9. doi: 10.1016/S0926-860X(99)00044-7

    21. [21]

      SUNDARAMURTHY V, DALAI A K, ADJAYE J. Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen[J]. Appl Catal A: Gen, 2006,311(1):155-163.

    22. [22]

      JEONG G. HDN of pyridine over molybdenum carbide[J]. J Catal, 1995,154(1):33-40. doi: 10.1006/jcat.1995.1143

    23. [23]

      COLLING C W, THOMPSON L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts[J]. J Catal, 1994,146(1):193-203. doi: 10.1016/0021-9517(94)90022-1

    24. [24]

      MIGA K, STANCZYK K, SAYAG C, BRODZKI D, DJÉGA-MARIADASSOU G. Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole[J]. J Catal, 1999,183(1):63-68. doi: 10.1006/jcat.1998.2381

    25. [25]

      OZKAN U S, ZHANG L, CLARK P A. Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. J Catal, 1997,172(2):294-306. doi: 10.1006/jcat.1997.1873

    26. [26]

      NAGAI M, KURAKAMI T, OMI S. Activity of carbided molybdenum-alumina for CO2 hydrogenation[J]. Catal Today, 1998,45(1/4):235-239.

    27. [27]

      NAGAI M, OSHIKAWA K, KURAKAMI T, MIYAO T, OMI S. Surface properties of carbided molybdenum-alumina and its activity for CO2 hydrogenation[J]. J Catal, 1998,180(1):14-23. doi: 10.1006/jcat.1998.2262

    28. [28]

      LEE J S, YEOM M H, PARK K Y, NAM I S, CHUNG J S, KIM Y G, MOON S H. Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts[J]. J Catal, 1991,128(1):126-136. doi: 10.1016/0021-9517(91)90072-C

    29. [29]

      YANG S, LI C, XU J, XIN Q. In situ probing of surface sites on supported molybdenum nitride catalyst by CO adsorption[J]. Chem Commun, 1997,127(13):1247-1248.  

    30. [30]

      AFANASIEV P. New single source route to the molybdenum nitride Mo2N[J]. Inorg Chem, 2002,41(21):5317-5319. doi: 10.1021/ic025564d

    31. [31]

      WANG H M, LI W, ZHANG M H. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J]. Chem Mater, 2005,17(12):3262-3267. doi: 10.1021/cm047735d

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    16. [16]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    17. [17]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    18. [18]

      Dongxia Zhang Sijia Hao Jiarui Wang Jiwei Wang Xiaogang Dong Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

Metrics
  • PDF Downloads(2)
  • Abstract views(1298)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return