Citation: ZHANG Qiang, YU Peng-qiu, LI Lin, LE Zhi-ping. Preparation of 5-HMF from cellulose catalyzed by SnCl4 under microwave in ZnCl2 solution[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 317-322. shu

Preparation of 5-HMF from cellulose catalyzed by SnCl4 under microwave in ZnCl2 solution

  • Corresponding author: LE Zhi-ping, zple@ncu.edu.cn
  • Received Date: 23 August 2016
    Revised Date: 4 January 2017

    Fund Project: the National Natural Science Foundation of China 21466021

Figures(7)

  • Conversion of cellulose into 5-hydroxymethylfurfural (5-HMF) catalyzed by SnCl4 in ZnCl2 solution with microwave was studied. The effects of microwave power, cellulose content, concentration of ZnCl2, reaction time and the molar ratio of SnCl4 to cellulose on the yields of 5-HMF were investigated. The results showed that under the optimum reaction condition of 1.0 g cellulose dissolved in 100 mL 70% ZnCl2 solution, the molar ratio of SnCl4 to cellulose of 2:1, the microwave power of 420 W, and the reaction time of 9 min, the yield of 5-HMF reaches 39.4%.
  • 加载中
    1. [1]

      POTOČNIK J. Renewable energy sources and the realities of setting an energy agenda[J]. Science, 2007,315(5813):810-811. doi: 10.1126/science.1139086

    2. [2]

      WILEY L F, GOSTIN L O. The international response to climate change:An agenda for global health[J]. JAMA, 2009,302(11):1218-1220. doi: 10.1001/jama.2009.1381

    3. [3]

      ROSE M, PALKOVITS R. Cellulose-based sustainable polymers:State of the art and future trends[J]. Macromol Rapid Comm, 2011,32(17):1299-1311. doi: 10.1002/marc.201100230

    4. [4]

      WANG S, LIN H, CHEN J, ZHAO Y, RU B, QIU K, ZHOU J. Conversion of carbohydrates into 5-hydroxymethyl furfural in an advanced single-phase reaction system consisting of water and 1, 2-dimethoxyethane[J]. RSC Adv, 2015,5(102):84014-84021. doi: 10.1039/C5RA18824E

    5. [5]

      ROSATELLA A A, SIMEONOV S P, FRADE R F, AFONSO C A. 5-Hydroxymethyl furfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chem, 2011,13(4):754-793. doi: 10.1039/c0gc00401d

    6. [6]

      VAN PUTTEN R J, VAN DER WAAL J C, DE JONG E D, RASRENDRA C B, HEERES H J, DE VRIES J G. Hydroxymethyl furfural, a versatile platform chemical made from renewable resources[J]. Chem Rev, 2013,113(3):1499-1597. doi: 10.1021/cr300182k

    7. [7]

      TEONG S P, YI G, ZHANG Y. Hydroxymethyl furfural production from bioresources:Past, present and future[J]. Green Chem, 2014,16(4):2015-2026. doi: 10.1039/c3gc42018c

    8. [8]

      ZHANG Y, PAN J, GAN M, OU H, YAN Y, SHI W, YU L. Acid-chromic chloride functionalized natural clay-particles for enhanced conversion of one-pot cellulose to 5-hydroxymethyl furfural in ionic liquids[J]. RSC Adv, 2014,4(23):11664-11672. doi: 10.1039/c3ra46561f

    9. [9]

      ZHOU L, HE Y, MA Z, LIANG R, WU T, WU Y. One-step degradation of cellulose to 5-hydroxymethyl furfural in ionic liquid under mild conditions[J]. Carbohyd Polym, 2015,117:694-700. doi: 10.1016/j.carbpol.2014.10.062

    10. [10]

      CAO N J, XU Q, CHEN L F. Acid hydrolysis of cellulose in zinc chloride solution[J]. Appl Biochem Biotechnol, 1995,51(1):21-28.  

    11. [11]

      SEN S, MARTIN J D, ARGYROPOULOS D S. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates[J]. ACS Sustain Chem Eng, 2013,1(8):858-870. doi: 10.1021/sc400085a

    12. [12]

      LAI B, ZHAO Y, YAN L. Preparation of 5-hydroxymethyl furfural from cellulose via fast depolymerization and consecutively catalytic conversion[J]. Chin J Chem Phys, 2013,26(3):355-360. doi: 10.1063/1674-0068/26/03/355-360

    13. [13]

      LIU B, ZHANG Z, ZHAO Z K. Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethyl furfural in ionic liquids[J]. Chem Eng J, 2013,215:517-521.  

    14. [14]

      DE S, DUTTA S, SAHA B. Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethyl furfural with aluminium chloride catalyst in water[J]. Green Chem, 2011,13(10):2859-2868. doi: 10.1039/c1gc15550d

    15. [15]

      QI X, WATANABE M, AIDA T M, SMITH R L. Fast transformation of glucose and di/polysaccharides into 5-hydroxymethyl furfural by microwave heating in an Ionic liquid/catalyst system[J]. ChemSusChem, 2010,3(9):1071-1077. doi: 10.1002/cssc.v3:9

    16. [16]

      SHI N, LIU Q, WANG T, ZHANG Q, TU J, MA L. Conversion of cellulose to 5-hydroxymethylfurfural in water-tetrahydrofuran and byproducts Identification[J]. Chin J Chem Phys, 2014,27(6):711-717. doi: 10.1063/1674-0068/27/06/711-717

    17. [17]

      WANG Y, PEDERSEN C M, DENG T, QIAO Y, HOU X. Direct conversion of chitin biomass to 5-hydroxymethyl furfural in concentrated ZnCl 2 aqueous solution[J]. Bioresource Technol, 2013,143:384-390. doi: 10.1016/j.biortech.2013.06.024

    18. [18]

      ZHU Ping, TANG Ying, XUE Qing-song, LI Jian-feng, LU Yong. Microwave-assisted hydrolysis of cellulose using metal chloride as Lewis acid catalysts[J]. J Fuel Chem Technol, 2009,37(2):244-247.  

    19. [19]

      CHOUDHARY V, MUSHRIF S H, HO C, ANDERKO A, NIKOLAKIS V, MARINKOVIC N S, FRENKEL A Z, SANDLER S I, VLACHOS D G. Insights into the interplay of Lewis and Br nsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. J Am Chem Soc, 2013,135(10):3997-4006. doi: 10.1021/ja3122763

    20. [20]

      YANG Lei, LI Gang, YANG Fang, LIU Ya-li, ZHANG Song-mei. Conversion of cellulose to furans catalyzed by zinc chloride under microwave irradiation[J]. J Fuel Chem Technol, 2012,40(3):326-330.  

    21. [21]

      VANOYE L, FANSELOW M, HOLBREY J D, ATKINS M P, SEDDON K R. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride[J]. Green Chem, 2009,11(3):390-396. doi: 10.1039/b817882h

    22. [22]

      WRIGSTEDT P, KESKIVÄLI J, REPO T. Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethyl furfural[J]. RSC Adv, 2016,6(23):18973-18979. doi: 10.1039/C5RA25564C

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    7. [7]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    13. [13]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    14. [14]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    15. [15]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    16. [16]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    17. [17]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    20. [20]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

Metrics
  • PDF Downloads(0)
  • Abstract views(1106)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return