Citation: Chen Gongdong. Intellectual Origins of the Chemical Bond Theory of Linus Pauling[J]. Chemistry, ;2019, 82(6): 566-575, 515. shu

Intellectual Origins of the Chemical Bond Theory of Linus Pauling

  • Corresponding author: Chen Gongdong, g.d.chen@qq.com
  • Received Date: 5 March 2019
    Accepted Date: 3 April 2019

Figures(10)

  • Chemistry and physics interacted considerably on the problem of chemical bond during the early twentieth century. Among them, the influence of the theory put forward by American chemist Pauling in the early 1930s is the most significant. Pauling's work had several origins from both chemistry and physics, ranging from classical structural chemistry in late nineteenth century to quantum mechanics just articulated then, and those training him directly including the chemical bond theory of Lewis, X-ray crystallography, and physical chemistry. Physical origins have more prominent influence than chemical, while both sorts regard experiment, and theoretical aspects show more convergence to the empirical than the reverse.
  • 加载中
    1. [1]

    2. [2]

      W Heisenberg. Zeitschrift für Physik, 1926, 38(6~7): 411~426. 

    3. [3]

      H C Urey. J. Chem. Phys., 1933, 1(1): 1~2. 

    4. [4]

    5. [5]

      L Pauling. The Nature of the Chemical Bond. Ithaca, NY: Cornell University Press, 1939, vii. 

    6. [6]

    7. [7]

    8. [8]

      I Falconer. Brit. J. Hist. Sci., 1987, 20(3): 241~276. 

    9. [9]

      J J Thomson. The Corpuscular Theory of Matter. London, UK: A. Constable & Co., 1907. 

    10. [10]

      J J Thomson. Philosophical Magazine, 1914, 27: 757~789. 

    11. [11]

      P Coffey. Cathedrals of Science. New York: Oxford University Press, 2008, 136~137. 

    12. [12]

      P P Ewald ed. Fifty Years of X-Ray Diffraction. Utrecht, the Netherlands: N. V. A. Oosthoek's, 1962: 31~56.

    13. [13]

       

    14. [14]

      R J Paradowski. The Structural Chemistry of Linus Pauling[D]. University of Wisconsin, 1972: 157~177. 

    15. [15]

    16. [16]

      L J James. Naturalizing the Chemical Bond[D]. Harvard University, 2007: 256~274. 

    17. [17]

    18. [18]

      T Hager. Force of Nature. New York: Simon & Schuster, 1995: 110~137.

    19. [19]

      K Gavroglu and A Simões. Neither Physics nor Chemistry. Cambridge, MA: MIT Press, 2012: 12~25.

    20. [20]

      H Heitler and F London. Zeitschrift für Physik, 1927, 44(6~7): 455~472. 

    21. [21]

      J C Slater. Phys. Rev., 1931, 37(3): 481~489. 

    22. [22]

      T Hager. Force of Nature. 55~64.

    23. [23]

      P Coffey. Cathedrals of Science. 38~70, 175~207. 

    24. [24]

      A Simões. J. Comput. Quantum Chem., 2007, 28(1): 62~72. 

    25. [25]

      G N Lewis. J. Am. Chem. Soc., 1913, 35(10): 1448~1455. 

    26. [26]

      G N Lewis. J. Am. Chem. Soc., 1916, 38(4): 762~785.

    27. [27]

      R E Kohler. Hist. Stud. Phys. Sci., 1974, 4: 39~87.

    28. [28]

       

    29. [29]

      W H Brock. The Norton History of Chemistry. New York: W. W. Norton, 1993: 241~269. 

    30. [30]

       

    31. [31]

      J W Servos. Physical Chemistry from Ostwald to Pauling. Princeton, NJ: The University Press, 1990: 46~99, 251~298. 

    32. [32]

      J R Goodstein. Millikan's School. New York: W. W. Norton, 1991, 76~87.

    33. [33]

      Interview of Linus Pauling by John L. Heilbron on 1964 March 27, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA[OL]. www.aip.org/history-programs/niels-bohr-library/oral-histories/3448.

    34. [34]

      J H Van Vleck, A Sherman. Rev. Mod. Phys., 1935, 7(3): 167~228.

    35. [35]

      A Simões. Converging Trajectories, Diverging Traditions[D]. University of Maryland, College Park, 1993: 76~81.

    36. [36]

      A Karachalios. Erich Hückel (1896~1980). Heideberg, Germany: Springer, 2010.

    37. [37]

       

    38. [38]

       

    39. [39]

      B S Park. Brit. J. Hist. Sci., 1999, 32(1): 21~46. 

    40. [40]

      M J Nye. From Chemical Philosophy to Theoretical Chemistry. San Francisco, CA: University of California Press, 1993: 32~55. 

    41. [41]

      R S Mulliken. Phys. Today, 1968, 21(4): 52~57. 

  • 加载中
    1. [1]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    2. [2]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    7. [7]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(29)
  • Abstract views(1946)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return