Citation:
Zhao Yan, Xu Qing, Fu Yao, Liu Yin. Preliminary study on Preparation of High-Quality Transportation Fuels from Lignin[J]. Chemistry,
;2017, 80(3): 278-282.
-
Lignin as an abundant natural renewable resource is the ideal feedstock for the production of liquid transportation fuels. In this work a method for the production of liquid transportation fuels from lignin was studied. First, lignin monomer model was oxidized to obtain aromatic aldehyde under the catalysis of K-OMS-2. The lignin dimer model (α-O-4 structure lignin dimer) was oxidized and depolymerized to obtain the aromatic aldehyde in 65% yield. Meanwhile, by oxidizing alkali lignin, vanillin, p-hydroxybenzaldehyde and other aromatic aldehyde compounds can be detected from the product. Then, the length of the carbon chain was increased by Claisen-Schmidt condensation reaction of aromatic aldehydes and acetone. Finally, high-grade saturated alkane fuel was obtained by hydrogenation of aromatic hydrocarbons.
-
Keywords:
- Lignin,
- Oxidation,
- Condensation,
- Hydrogenation
-
-
- [1]
-
[2]
S De, B Saha, R Luque. Bioresource Technol., 2015, 178:108-118.
-
[3]
G W Huber, S Iborra, A Corma. Chem. Rev., 2006,106:4044-4098.
-
[4]
J Zakzeski, C A B Pieter, L Anna et al. Chem. Rev., 2010, 110:3552-3599.
-
[5]
C Somerville, H Youngs, C Taylor et al. Science. 2010, 329:790-792.
-
[6]
Y Nakagawa, S Liu, M Tamura et al. ChemSusChem, 2015, 8:1114-1132.
- [7]
- [8]
-
[9]
J E Holladay, J J Bozell, J F White et al. Top value-added chemicals from biomass. In:Results of Screening for Potential Candidates from Biorefinery Lignin, 2007, 2:PNNL-16983.
-
[10]
A J Ragauskas, C K Williams, B H Davison et al. Science, 2006, 311:484-489.
- [11]
-
[12]
J H Zhang, H B Deng, L N Lu et al. Bioresource Technol., 2010, 101:2311-2316.
-
[13]
Y Y Ye, Y Zhang, J Fan et al. Bioresource Technol., 2012, 118:648-651.
-
[14]
A R Gaspar, J A F Gamelas, D V Evtuguin et al. Green Chem., 2007, 9:717-730.
- [15]
-
[16]
B Sedai, D U Christia, R T Baker et al. ACS Catal., 2011, 1:794-804.
- [17]
- [18]
-
[19]
K Stärk, T N Nicola, A B mann et al. ChemSusChem, 2010, 3:719-723.
-
[20]
G W Huber, J N Chheda, C J Barrett et al. Science, 2005, 308:1446-1450.
- [21]
-
[22]
F S Chakar, A J Ragauskas. Ind. Crops Prod., 2004, 20:131-141.
-
[23]
G Fernando, F G Salesa, L C A Maranhãb et al. Chem. Eng. Sci., 2007, 625:5386-5391.
-
[24]
O C Agbaje, O O Fadeyi, C O Okoro. Tetrahed. Lett., 2011, 52:5297-5300.
-
[25]
A F M Motiur Rahman, A Roushown, Y D Jahng et al. Molecules, 2012, 17:571-583.
-
[26]
C Zhao, Y Kou, A A Lemonidou et al. Angew. Chem. Int. Ed., 2009, 48:3987-3990.
-
[27]
C Zhao, Y Kou, A A Lemonidou et al. Chem. Commun., 2010, 46:412-414.
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[4]
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
-
[5]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[6]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[9]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[10]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[11]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[12]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[13]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[18]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[19]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[20]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[1]
Metrics
- PDF Downloads(8)
- Abstract views(1347)
- HTML views(396)